

# ON BOARD DIAGNOSTIC SYSTEM DESCRIPTION 5.0L V8 SC AJ 133 ENGINE MANAGEMENT SYSTEM

Vehicle Coverage: Jaguar F-Type 2014 MY

## CONTENTS Section Title

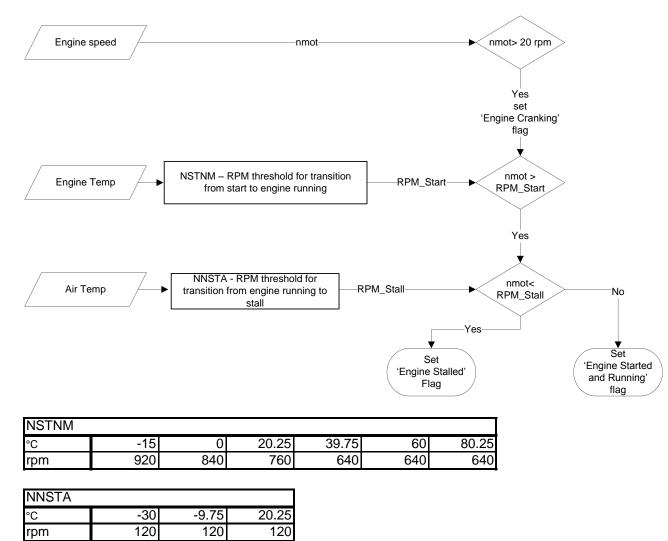
|           | started and running                                              |    |
|-----------|------------------------------------------------------------------|----|
| 1.1.      | Engine Start – System Flowchart                                  |    |
| 2. Engine | Cylinder Numbering and Firing Order                              |    |
| 2.1.      | V8                                                               |    |
|           | st Monitoring                                                    |    |
| 3.1.      | Fault Codes                                                      |    |
| 3.2.      | System Overview                                                  | 9  |
| 3.3.      | Strategy Description                                             |    |
| 3.3.1.    | Oxygen Storage Capacity (OSC) and catalyst efficiency evaluation | 10 |
| 3.3.2.    | Diagnosis constraints                                            | 10 |
| 3.3.3.    | Failure Criterion                                                |    |
| 3.4.      | Catalyst Monitor Diagnosis – System Flowchart and Tables         | 11 |
|           | Monitoring                                                       | 15 |
| 4.1.      | Fault Codes                                                      | 15 |
| 4.2.      | System Overview                                                  | 15 |
| 4.3.      | Strategy Description                                             | 17 |
| 4.3.1.    | Introduction                                                     |    |
| 4.3.2.    | Recording segment time and position, and its manipulation        | 17 |
| 4.3.3.    | Adjustment of crank angle tolerance/engine roughness values      | 18 |
| 4.3.4.    | Storing adaption values in back-up memory                        | 18 |
| 4.3.5.    | Misfire 'signal' calculation and misfire judgement               | 19 |
| 4.3.6.    | Catalyst damage judgement                                        | 22 |
| 4.3.7.    | Excess emissions judgement                                       | 23 |
| 4.3.8.    | Monitor execution check                                          | 23 |
| 4.3.9.    | Rough road                                                       | 23 |
| 4.4.      | Misfire Monitor – System Flowchart and Tables                    | 24 |
| 5. Evapor | ative System Monitoring                                          | 26 |
| 5.1.      | Fault Codes                                                      | 26 |
| 5.2.      | System Schematic                                                 | 27 |
| 5.3.      | System Description                                               | 28 |
| 5.4.      | Fault Determination                                              | 29 |
| 5.4.1.    | Reference Leak Measurement                                       | 29 |
| 5.4.2.    | Tank Measurement                                                 | 30 |
| 5.4.3.    | Fault Assessment                                                 |    |
|           |                                                                  |    |

Page

| 5.4.3.2.       Very Small Leak (0.020 inch)       32         5.4.3.3.       Fuel Cap Warning Message       33         5.4.3.4.       Filler Cap Removal and Re-Fueling.       33         5.5.       Evaporative System Monitoring – System Flowchart and Tables       34         5.6.       Diagnosis Frequency and MIL Illumination       37         6.       Purge Valve Monitoring       39         6.1.       Fault Codes       39         6.2.       System Schematic       39         6.3.       System Description       40         6.4.       Fault Determination       40         6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       41         6.4.3.1.       CPV stuck open       41         6.4.3.2.       CPV stuck open       41         6.4.3.3.       CPV stuck open       42         7.       Fault Codes       42         7.       Fuel System Monitoring – System Flowchart and Tables       42         7.1.       Fault Codes       45         7.2.       System Description       45         7.3.       Fuel Njector Monitoring – System Flowchart and Tables       46         7.4.       Fuel Njector Mo                                             | 5.4.3.1. | Small Leak / Rough Leak (> 0.040 inch)      | 31 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------|----|
| 5.4.3.3.       Fuel Cap Warning Message       33         5.4.3.4.       Filler Cap Removal and Re-Fueling.       33         5.5.       Evaporative System Monitoring – System Flowchart and Tables.       34         5.6.       Diagnosis Frequency and MIL Illumination.       37         6.       Purge Valve Monitoring.       39         6.1.       Fault Codes       39         6.2.       System Description       40         6.4.       Fault Determination       40         6.4.       Fault Determination       40         6.4.1.       Reference Leak Measurement       40         6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       41         6.4.3.       Fault Assessment       41         6.4.3.       Foul System Measurement       40         6.4.3.       Foul System Nonitoring – System Flowchart and Tables.       42         7.1.       Fault Odes       45         7.1.       Fault Odes       45         7.2.       System Monitoring – System Flowchart and Tables.       42         7.2.       System Monitoring Tables       45         7.3.       Fuel System Monitoring Tables       56         8.1.                                         |          |                                             |    |
| 5.4.3.4.       Filler Cap Removal and Re-Fueling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                             |    |
| 5.5.       Evaporative System Monitoring – System Flowchart and Tables.       34         5.6.       Diagnosis Frequency and MIL Illumination.       37         6.       Purge Valve Monitoring.       39         6.1.       Fault Codes.       39         6.2.       System Description.       40         6.4.       Fault Determination       40         6.4.       Fault Determination       40         6.4.1.       Reference Leak Measurement       40         6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       40         6.4.3.       Fault Assessment       41         6.4.3.1.       CPV stuck closed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables.       42         7.       Fault Codes       45         7.1.       Fault Codes       45         7.3.       Fuel System Monitoring – System Flowchart and Tables.       48         7.4.       Fuel Injector Monitoring – System Flowchart and Tables.       48         7.4.       Fuel Injector Monitoring – System Flowchart and Tables.       58         8.1.       Fault Codes       58         8.2.       System Overview.       58          |          |                                             |    |
| 5.6.       Diagnosis Frequency and MIL Illumination       37         6.       Purge Valve Monitoring       39         6.1.       Fault Codes       39         6.2.       System Description       40         6.4.       Fault Determination       40         6.4.1.       Reference Leak Measurement       40         6.4.2.       Purge System Measurement       40         6.4.3.1.       CPV stuck open       41         6.4.3.1.       CPV stuck open       41         6.4.3.1.       CPV stuck obsed or purge lines are blocked       41         6.4.3.1.       CPV stuck obsed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.1.       Fault Codes       45         7.1.       Fault Codes       45         7.3.       Fuel System Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       56         8.1.       Fault Codes       56         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Monitoring       59         8.4.       Sensor Heater Control                                                    |          |                                             |    |
| 6.       Purge Valve Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                             |    |
| 6.1.       Fault Codes       39         6.2.       System Schematic       39         6.3.       System Description       40         6.4.       Fault Determination       40         6.4.1.       Reference Leak Measurement       40         6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       40         6.4.3.       Fault Assessment       41         6.4.3.1.       CPV stuck open       41         6.4.3.2.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring – System Flowchart and Tables       45         7.1.       Fault Codes       45         7.2.       System Monitoring – System Flowchart and Tables       46         7.4.       Fuel Injector Monitoring Tables       56         8.       UHEGO Sensor Monitoring       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.       Sensor resistance ha                                             |          |                                             |    |
| 6.2.       System Schematic.       39         6.3.       System Description       40         6.4.       Fault Determination       40         6.4.       Fault Determination       40         6.4.1.       Reference Leak Measurement       40         6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       41         6.4.3.       CPV stuck open       41         6.4.3.2.       CPV stuck closed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring – System Flowchart and Tables       42         7.1.       Fault Codes       45         7.2.       System Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       48         8.1.       Fault Codes       56         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valie Sensor resistance has been measured       59         8.4.2.       Dew point assessment       61         8.5.1.                                            | •        | •                                           |    |
| 6.3.       System Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |                                             |    |
| 6.4.       Fault Determination       40         6.4.1.       Reference Leak Measurement       40         6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       41         6.4.3.1.       CPV stuck open       41         6.4.3.2.       CPV stuck open       41         6.4.3.2.       CPV stuck open       41         6.4.3.2.       CPV stuck open       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring       45         7.1.       Fault Codes       45         7.2.       System Monitoring – System Flowchart and Tables       48         7.4.       Fuel System Monitoring Tables       48         7.4.       Fuel Injector Monitoring Tables       58         8.       UHEGO Sensor Monitoring       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valid sensor resistance has been measured       59         8.5.1.       Heater Diagnostics       61 <td>-</td> <td></td> <td></td>                          | -        |                                             |    |
| 64.1.       Reference Leak Measurement       40         64.2.       Purge System Measurement       40         64.3.       Fault Assessment       41         64.3.       Fault Assessment       41         64.3.       CPV stuck open       41         64.3.2.       CPV stuck closed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring – System Flowchart and Tables       45         7.2.       System Description       45         7.3.       Fuel System Monitoring a System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       48         8.       UHEGO Sensor Monitoring       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.1.       Valid sensor resistance has been measured       59         8.4.2.       Dew point assessment       61         8.5.1.       Heater Control       59         8.4.2.       Dew point assessment       61         8.5.1.       Heater Powerstage/control circuit analysis       61                          |          |                                             |    |
| 6.4.2.       Purge System Measurement       40         6.4.3.       Fault Assessment       41         6.4.3.1.       CPV stuck open       41         6.4.3.2.       CPV stuck closed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring       45         7.1.       Fault Codes       45         7.2.       System Description       45         7.3.       Fuel System Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       46         8.       UHEGO Sensor Monitoring       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.       Sensor resistance has been measured       59         8.4.       Dew point assessment       61         8.5.       Heater Diagnostics       61         8.5.1.       Heater Powerstage/control circuit analysis       61         8.5.2.       Heater Influence on Nernst Cell       62         8.6.1.                                            |          |                                             |    |
| 6.4.3.       Fault Assessment       41         6.4.3.1.       CPV stuck open       41         6.4.3.2.       CPV stuck closed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring       45         7.1.       Fault Codes       45         7.2.       System Description       45         7.3.       Fuel System Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       56         8.       UHEGO Sensor Monitoring Tables       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valid sensor resistance has been measured       59         8.5.1.       Heater Diagnostics       61         8.5.1.       Heater Diagnostics       61         8.5.2.       Heater Influence on Nernst Cell       62         8.6.1.       Integrated Circuit (IC) Electrical monitoring       62                                                                                              |          |                                             |    |
| 6.4.3.1.       CPV stuck open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |                                             |    |
| 6.4.3.2.       CPV stuck closed or purge lines are blocked       41         6.5.       Purge Flow Monitoring – System Flowchart and Tables       42         7.       Fuel System Monitoring       45         7.1.       Fault Codes       45         7.2.       System Description       45         7.3.       Fuel System Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       56         8.       UHEGO Sensor Monitoring       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valid sensor resistance has been measured       59         8.4.2.       Dew point assessment       61         8.5.1.       Heater Diagnostics       61         8.5.2.       Heater Control Diagnosis       61         8.5.3.       Heater Influence on Nernst Cell       62         8.6.3.       Heater Influence on Nernst Cell       62         8.6.1.       Integrated Circuit (IC) Electrical monitoring< |          |                                             |    |
| 6.5.       Purge Flow Monitoring – System Flowchart and Tables.       42         7.       Fuel System Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                                             |    |
| 7.       Fuel System Monitoring       45         7.1.       Fault Codes       45         7.2.       System Description       45         7.3.       Fuel System Monitoring – System Flowchart and Tables       48         7.4.       Fuel Injector Monitoring Tables       56         8.       UHEGO Sensor Monitoring       58         8.1.       Fault Codes       58         8.2.       System Overview       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valid sensor resistance has been measured       59         8.4.2.       Dew point assessment       61         8.5.       Heater Diagnostics       61         8.5.1.       Heater Powerstage/control circuit analysis       61         8.5.2.       Heater Control Diagnosis       61         8.5.3.       Heater Influence on Nernst Cell       62         8.6.       Signal Diagnostics       62         8.6.1.       Integrated Circuit (IC) Electrical monitoring       62                                                                                                                                                                                |          |                                             |    |
| 7.1.Fault Codes457.2.System Description457.3.Fuel System Monitoring – System Flowchart and Tables487.4.Fuel Injector Monitoring Tables568.UHEGO Sensor Monitoring588.1.Fault Codes588.2.System Overview588.3.'UHEGO Sensor Ready' Conditions598.4.Sensor Heater Control598.4.1.Valid sensor resistance has been measured598.4.2.Dew point assessment618.5.Heater Diagnostics618.5.1.Heater Control circuit analysis618.5.2.Heater Control Diagnosis618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                             |    |
| 7.2.System Description457.3.Fuel System Monitoring – System Flowchart and Tables487.4.Fuel Injector Monitoring Tables568.UHEGO Sensor Monitoring588.1.Fault Codes588.2.System Overview588.3.'UHEGO Sensor Ready' Conditions598.4.Sensor Heater Control598.4.1.Valid sensor resistance has been measured598.4.2.Dew point assessment618.5.3.Heater Diagnostics618.5.4.Heater Powerstage/control circuit analysis618.5.2.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                             |    |
| 7.3.       Fuel System Monitoring – System Flowchart and Tables.       48         7.4.       Fuel Injector Monitoring Tables       56         8.       UHEGO Sensor Monitoring.       58         8.1.       Fault Codes       58         8.2.       System Overview.       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valid sensor resistance has been measured.       59         8.4.2.       Dew point assessment       61         8.5.3.       Heater Diagnostics       61         8.5.4.       Heater Diagnostics       61         8.5.1.       Heater Control circuit analysis       61         8.5.2.       Heater Control Diagnosis       61         8.5.3.       Heater Control Diagnosis       61         8.5.4.       Beater Influence on Nernst Cell       62         8.6.       Signal Diagnostics       62         8.6.1.       Integrated Circuit (IC) Electrical monitoring       62                                                                                                                                                                                                                     |          |                                             |    |
| 7.4.Fuel Injector Monitoring Tables568.UHEGO Sensor Monitoring588.1.Fault Codes588.2.System Overview588.3.'UHEGO Sensor Ready' Conditions598.4.Sensor Heater Control598.4.1.Valid sensor resistance has been measured598.4.2.Dew point assessment618.5.Heater Diagnostics618.5.1.Heater Powerstage/control circuit analysis618.5.2.Heater Control Diagnosis618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                             |    |
| 8.       UHEGO Sensor Monitoring.       58         8.1.       Fault Codes       58         8.2.       System Overview.       58         8.3.       'UHEGO Sensor Ready' Conditions       59         8.4.       Sensor Heater Control       59         8.4.1.       Valid sensor resistance has been measured.       59         8.4.2.       Dew point assessment       61         8.5.       Heater Diagnostics       61         8.5.1.       Heater Powerstage/control circuit analysis       61         8.5.2.       Heater Control Diagnosis       61         8.5.3.       Heater Influence on Nernst Cell       62         8.6.       Signal Diagnostics       62         8.6.1.       Integrated Circuit (IC) Electrical monitoring       62                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        |                                             |    |
| 8.1.Fault Codes588.2.System Overview588.3.'UHEGO Sensor Ready' Conditions598.4.Sensor Heater Control598.4.1.Valid sensor resistance has been measured598.4.2.Dew point assessment618.5.Heater Diagnostics618.5.1.Heater Powerstage/control circuit analysis618.5.2.Heater Control Diagnosis618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8. UHEGO |                                             |    |
| 8.2.System Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | •                                           |    |
| 8.3.'ÚHEGO Sensor Ready' Conditions598.4.Sensor Heater Control598.4.1.Valid sensor resistance has been measured598.4.2.Dew point assessment618.5.Heater Diagnostics618.5.1.Heater Powerstage/control circuit analysis618.5.2.Heater Control Diagnosis618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.2.     |                                             |    |
| 8.4.Sensor Heater Control598.4.1.Valid sensor resistance has been measured.598.4.2.Dew point assessment618.5.Heater Diagnostics618.5.1.Heater Powerstage/control circuit analysis618.5.2.Heater Control Diagnosis618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.3.     |                                             |    |
| 8.4.2.Dew point assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.4.     |                                             |    |
| 8.4.2.Dew point assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.4.1.   | Valid sensor resistance has been measured   | 59 |
| 8.5.1.Heater Powerstage/control circuit analysis618.5.2.Heater Control Diagnosis618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.4.2.   |                                             |    |
| 8.5.2.Heater Control Diagnosis.618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.5.     | Heater Diagnostics                          | 61 |
| 8.5.2.Heater Control Diagnosis.618.5.3.Heater Influence on Nernst Cell628.6.Signal Diagnostics628.6.1.Integrated Circuit (IC) Electrical monitoring62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.5.1.   | Heater Powerstage/control circuit analysis  | 61 |
| 8.6.Signal Diagnostics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.5.2.   |                                             |    |
| 8.6.1. Integrated Circuit (IC) Electrical monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.5.3.   | Heater Influence on Nernst Cell             | 62 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.6.     | Signal Diagnostics                          | 62 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.6.1.   |                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.6.2.   | UHEGO Signal Diagnostics – System Flowchart |    |
| 8.6.3. Sensor Dynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.6.3.   | Sensor Dynamics                             | 65 |

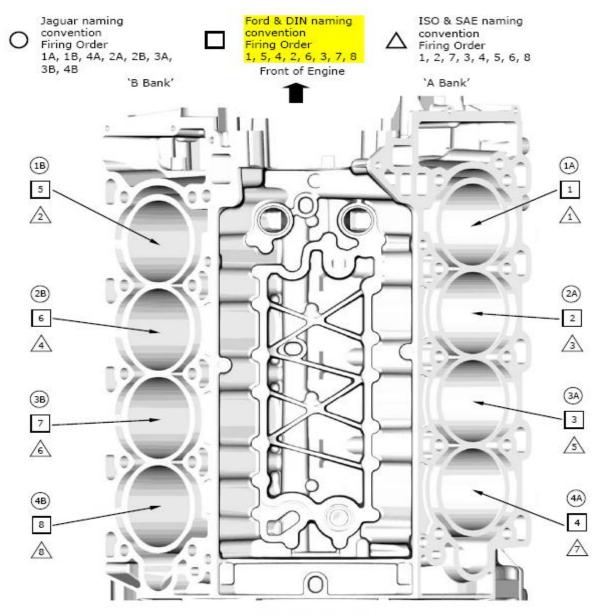


| 8.6.4.       | UHEGO Sensor Dynamics – System Flowchart                           |    |
|--------------|--------------------------------------------------------------------|----|
| 8.7.         | UHEGO Sensor Monitoring Tables                                     |    |
|              | (LSF AND LSH) Sensor Monitoring                                    |    |
| 9.1.         | Fault Codes                                                        |    |
| 9.2.         | System Overview                                                    |    |
| 9.3.         | 'HEGO Sensor Ready' Conditions                                     |    |
| 9.4.         | Sensor Heater Control                                              | 74 |
| 9.5.         | Heater Diagnostics                                                 | 75 |
| 9.5.1.       | Heater power stage monitoring                                      |    |
| 9.5.2.       | Heater monitoring                                                  |    |
| 9.5.3.       | HEGO Heater Monitor – System Flowchart                             | 76 |
| 9.6.         | Signal Diagnostics                                                 | 76 |
| 9.6.1.       | Electrical monitoring                                              | 76 |
| 9.6.2.       | HEGO Electrical Monitoring – System Flowchart                      | 77 |
| 9.6.3.       | HEGO Sensor dynamics                                               | 78 |
| 9.6.3.1.     | Delayed response                                                   | 78 |
| 9.6.3.2.     | Transient response                                                 | 78 |
| 9.6.3.3.     | Range or signal stuck                                              | 79 |
| 9.6.3.4.     | Delayed response – System Flowchart                                | 80 |
| 9.6.3.5.     | Transient response – System Flowchart                              | 81 |
| 9.6.3.6.     | Range or signal stuck – System Flowchart                           | 82 |
| 9.7.         | HEGO (LSF and LSH) Sensor Monitoring Tables                        | 83 |
| 10. Individu | al Cylinder AFR Monitor                                            |    |
| 10.1.        | Fault Codes                                                        | 88 |
| 10.2.        | System Description                                                 | 88 |
| 10.3.        | Fault Decision                                                     | 88 |
| 10.4.        | Individual Cylinder AFR Monitor – System Flowchart and Tables      | 89 |
| 11. Engine   | Cooling System - Thermostat Monitoring                             |    |
| 11.1.        | System Schematic                                                   | 91 |
| 11.2.        | System Description                                                 | 92 |
| Typical Tim  | ne to Detection for a failed Thermostat during Normal Driving      | 93 |
| 11.3.        | Thermostat Monitoring – System Flowchart and Tables                |    |
| 12. Compre   | ehensive Component Monitoring                                      | 96 |
| 12.1.        | Intake Air Temperature Sensor Monitor                              | 96 |
| 12.1.1.      | Super Charged Variants                                             |    |
| 12.1.1.1.    | TMAP/TFA1 (Post intercooler) Intake Air Temperature Sensor Monitor |    |
| 12.1.1.1.1.  | Fault Codes                                                        | 97 |


| 12.1.1.1.2. | Electrical Monitor                                            | . 97 |
|-------------|---------------------------------------------------------------|------|
|             | Rationality Monitor                                           |      |
|             | Cold Start Monitor                                            |      |
|             | TFA1 Monitoring – System Flowchart and Tables(SC Variant)     |      |
|             | TFA2 (Pre-Throttle) Intake Air Temperature Sensor Monitor     |      |
|             | Fault Codes                                                   |      |
| 12.1.1.2.2. | Electrical Monitor                                            | 102  |
|             | Rationality Monitor                                           |      |
|             | Cold Start Monitor                                            |      |
|             | TFA2 Monitoring – System Flowchart and Table                  |      |
| 12.1.1.3.   | TFA3 (Supercharger out) Intake Air Temperature Sensor Monitor | 105  |
|             | Fault Codes                                                   |      |
| 12.1.1.3.2. | Electrical Monitor                                            | 105  |
| 12.1.1.3.3. | Rationality Monitor                                           | 105  |
| 12.1.1.3.4. | Cold Start Monitor                                            | 105  |
| 12.1.1.3.5. | TFA3 Monitoring – System Flowchart and Table                  | 106  |
| 12.2.       | Mass Airflow Sensor Monitors                                  | 108  |
| 12.2.1.     | Fault Codes                                                   | 108  |
| 12.2.2.     | Electrical check                                              | 109  |
| 12.2.3.     | Cross Flow Compensation Range and Plausibility Check          | 109  |
| 12.2.4.     | MAF Monitoring – System Flowchart and Tables                  | 111  |
| 12.3.       | Intake Pressure Sensor Monitors                               | 114  |
| 12.3.1.     | Super Charged Variants                                        | 114  |
| 12.3.1.1.   | TMAP Pressure Monitor                                         | 114  |
| 12.3.1.1.1. | Fault Codes                                                   | 114  |
| 12.3.1.1.2. | Electrical Monitor                                            | 114  |
| 12.3.1.1.3. | Range Check, Rationality and Signal Monitor                   | 114  |
| 12.3.1.2.   | MAP Pressure Monitor – Pressure Downstream of Throttle        | 115  |
| 12.3.1.2.1. | Fault Codes                                                   | 115  |
| 12.3.1.2.2. | Electrical Monitor                                            | 115  |
| 12.3.1.2.3. | Range Check, Rationality and Signal Monitor                   | 116  |
| 12.3.2.     | MAP/TMAP Monitoring – System Flowchart and Tables             |      |
| 12.4.       | Coolant Temperature Sensor Monitor ECT 1                      | 122  |
| 12.4.1.     | Fault Codes                                                   | 122  |
| 12.4.2.     | Electrical Monitor                                            | 122  |
| 12.4.3.     | Rationality Monitor                                           | 122  |
| 12.4.4.     | Cold Start Monitor                                            | 123  |

| 12.4.5.     | Coolant Sensor Monitor – System Flowchart and Tables          | 101 |
|-------------|---------------------------------------------------------------|-----|
| 12.4.5.     | Radiator Out Temperature Monitor ECT 2                        |     |
| 12.5.1.     | Fault Codes                                                   |     |
| 12.5.1.     | Range Monitor                                                 |     |
| 12.5.2.     | Rationality Monitor                                           |     |
| 12.5.3.     |                                                               |     |
|             | Radiator Out Temperature Monitor – System Flowchart and Table |     |
|             | nal Tables                                                    |     |
| 13.1.       | Cold Start Emission Reduction Strategy Performance Tables     |     |
| 13.2.       | Supercharger control Valve Monitoring Table                   |     |
| 13.3.       | Ambient Temperature Sensor Monitoring Table                   |     |
| 13.4.       | Sensor Supply Voltage and Main Relay Monitoring Table         |     |
| 13.5.       | Knock Sensor Monitoring Table                                 |     |
| 13.6.       | Ignition Coil Driver Monitoring Table                         |     |
| 13.7.       | Vehicle Speed Determination Table                             | 141 |
| 13.8.       | Throttle Monitoring Tables                                    | 142 |
| 13.9.       | Throttle Monitoring Tables                                    | 143 |
| 13.10.      | Acceleration Pedal Position Sensor Monitoring Table           | 144 |
| 13.11.      | ECM Monitoring Tables                                         | 145 |
| 13.12.      | Network Management Tables                                     | 147 |
| 14. Additio | nal Information                                               |     |
| 14.1.       | Diagnostic Test Mode Compliance                               |     |
| 14.2.       | Stored Engine Conditions - Mode\$02                           |     |
| 14.3.       | Communication of Monitor Test Results - Mode\$06              |     |
| 14.4.       | Drawing and Location of the Malfunction Indicator Light       |     |
| 14.5.       | Location of the Data Link Connector                           |     |
|             |                                                               |     |

#### 1. Engine started and running


The engine is classified as cranking if the engine speed is greater than 20 rpm. An engine running condition is determined if the engine speed exceeds a coolant temperature based threshold and does not fall below an intake air temperature based threshold.

## 1.1. Engine Start – System Flowchart

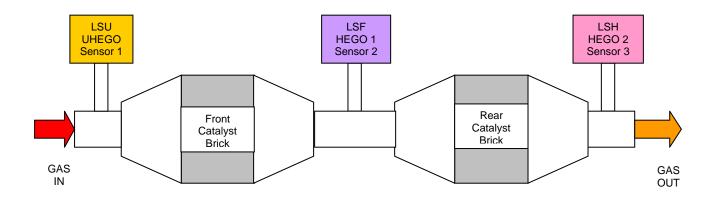


2. Engine Cylinder Numbering and Firing Order

## 2.1. V8



REAR FACE OF BLOCK


#### 3. Catalyst Monitoring

#### 3.1. Fault Codes

P0420 - Catalyst System Efficiency Below Threshold (Bank 1)

P0430 - Catalyst System Efficiency Below Threshold (Bank 2)

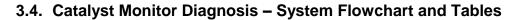
## 3.2. System Overview

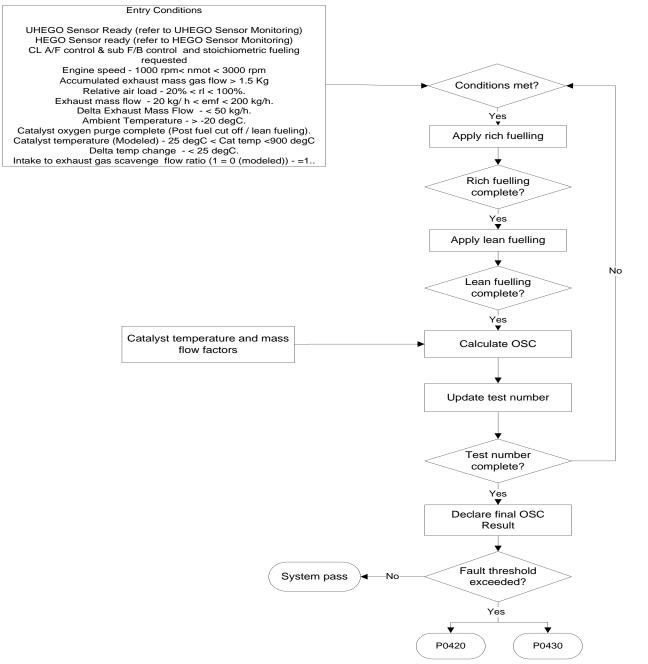


The Bosch ME17 EMS provides stoichiometric homogenous fueling with a Pt/Ph/Rh three way catalytic convertor (TWC) to achieve the legislated HC, CO and NOx emission control. Each cylinder bank of the 'V' engine configuration has its own dedicated catalyst and sensor system. This system consists of a front and rear split catalysts with three sensors. Sensor 1 is a wide band UHEGO LSU sensor and is mounted upstream (engine side) of the front catalyst providing primary fueling control. The second (LSF) and third (LSH) sensors are binary HEGO sensors, the LSF being located between the pre and main catalysts with the LSH downstream of the main catalyst. The HEGO sensors are used to provide secondary fueling control to ensure efficient catalyst operation with the LSF sensor being used to monitor catalyst efficiency. Sensor and bank references are as follows, LSU - sensor 1, LSF - sensor 2 and LSH - sensor 3. Bank references are 1 and 2. For example 1, sensor 2 bank 1 refers to the LSF on bank 1 and sensor 1 bank 2 is the LSU sensor bank 2.

#### 3.3. Strategy Description

## 3.3.1. Oxygen Storage Capacity (OSC) and catalyst efficiency evaluation


Legislation requires that if catalyst efficiency has dropped below 50% or exceeds OBD emission limits then a system fault must be diagnosed and declared. Catalytic conversion is dependent upon free oxygen in the catalyst and catalyst efficiency is determined through OSC assessment. This is achieved by actively removing the oxygen content in the catalyst (by using UHEGO controlled rich fuelling) and then introducing a known oxygen volume (UHEGO controlled lean fuelling) and observing HEGO activity. Differing OSC will give different HEGO activity, the analysis of which is used to determine catalyst condition.


#### 3.3.2. Diagnosis constraints

The monitor operates once per drive cycle. The efficiency analysis will only take place once the catalyst has reached acceptable operational conditions. Other conditions are used to ensure that steady state conditions are satisfied to avoid transient mass flow or temperature influences. Analysis can only take place if other system fault conditions are compatible. The conditions required for consistent analysis are outlined in 3.4. The diagnosis will not begin until these conditions are met and the diagnosis will suspend if the conditions are exited. If these conditions are met again then the diagnosis will continue, but if several diagnosis attempts are made without satisfactorily being completed or a time limit exceeded then the analysis is reset. A full diagnosis is made once per trip and the results stored for In Use Monitor Performance Ratio (IUMPR) reporting.

#### 3.3.3. Failure Criterion

The rich to lean HEGO response is averaged over a number of rich lean shifts to determine the final OSC. The final OSC is then compared to a failure threshold and a pass or fail judgment made. This failure threshold is determined from a catalyst whose OSC is just sufficient enough to provide catalytic conversion that meets the legislative requirement. Two major factors that influence OSC are catalyst temperature and exhaust mass flow and the failure threshold is adjusted for these, allowing the HEGO analysis to provide consistent, repeatable analysis across all its operational ranges.





|                                                                            |               |                                                   | Catalyst Moni                                                                                                                                   | toring                   |                                                                                                |                                                                                             |              |                   |
|----------------------------------------------------------------------------|---------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                                                           | Fault<br>Code | Malfunction Strategy<br>Description               | Malfunction Criteria                                                                                                                            | Threshold<br>Value       | Secondary Parameters                                                                           | Enable Conditions                                                                           | Time<br>Req. | MIL<br>illum.     |
| Catalyst Monitoring                                                        |               |                                                   |                                                                                                                                                 |                          |                                                                                                |                                                                                             |              |                   |
| Catalyst efficiency bank A<br>(DKATSPEB/DKATEVAL/DKATSP<br>)<br><i>KAT</i> |               | Oxygen storage capacity<br>assessment of catalyst | Oxygen storage capacity of<br>catalyst assessed through rich to<br>lean fuel changes. An averaged<br>value over four results, weighted          | See<br>KFOSCD<br>(table) | UHEGO Sensor Ready -<br>HEGO (LSF/LSH) Sensors ready -                                         | See description document<br><u>'8. UHEGO Sensor Monitoring'</u><br>See description document | 20 s         | 2 Drive<br>Cycles |
| KAT2                                                                       |               |                                                   | for mass flow and temperature is<br>compared to the OSC of that for a<br>limit catalyst. This ratio is then<br>compared to a failure threshold. | (OSCKTD)<br>Ratio = 1    | CL A/F control & sub F/B control<br>and stoichiometric fueling<br>requested -                  | <u>'9. HEGO Sensor Monitoring'</u>                                                          |              |                   |
|                                                                            |               |                                                   |                                                                                                                                                 |                          | Engine speed -<br>Accumulated exhaust mass gas<br>flow -                                       | 1080 rpm < nmot < 2000 rpm<br>> 11.5 Kg                                                     |              |                   |
|                                                                            |               |                                                   |                                                                                                                                                 |                          | Relative air load -                                                                            | RLKTDMN % < rl < RLKTDMX %<br>(table)                                                       |              |                   |
|                                                                            |               |                                                   |                                                                                                                                                 |                          | Exhaust mass flow -                                                                            | 20 kg/h < msabvvk < 120 kg/h                                                                |              |                   |
|                                                                            |               |                                                   |                                                                                                                                                 |                          | Delta Exhaust Mass Flow -                                                                      | < 35 kg/h                                                                                   |              |                   |
|                                                                            |               |                                                   |                                                                                                                                                 |                          | Ambient Temperature -<br>Catalyst oxygen purge complete<br>(Post fuel cut off / lean fueling). | > -48  °C                                                                                   |              |                   |
|                                                                            |               |                                                   |                                                                                                                                                 |                          | Catalyst temperature (Modeled) -<br>Delta catalyst temp change -                               | 500 °C < tkivkm _w < 800 °C<br>< 25   °C in 10s                                             |              |                   |

|                  |               |                                  | Catalyst M           | lonitoring         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                              |                                                                                                                                             |
|------------------|---------------|----------------------------------|----------------------|--------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Component/System | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters           | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time<br>Req.                                                                                                                                                                                                 | MIL<br>illum.                                                                                                                               |
|                  |               |                                  |                      |                    | Fault codes that disable P0420 | P013E, P0138, P0137, P0141, P013<br>P0038, P0037, P0036, P2270, P227<br>P0100, P00BD, P00BC, P010D, P01<br>P00BF, P00BE, P010B, P0101, P02<br>(Bsig), P0236 (Pmax), P0236 (Pmin),<br>P0236 (Bmax), P0236 (Bmin), P023<br>P2177, P2178, P2187, P2188, P049<br>P0133, P2231, P2626, P0118, P011<br>P2095, P2094, P0023, P2091, P209<br>P0014, P000C, P0021, P2093, P209<br>P0014, P000C, P0021, P2093, P209<br>P0014, P000C, P0021, P2093, P209<br>P0135, P00D1 (npl), P00D1 (sig), P0<br>P064D (min), P064D (npl), P064D (s<br>P2237 (npl), P2237 (sig), P0132, P0<br>P2251, P0130, P2195, P2196, P017<br>P0126, P0116 (Pnpl), P0116 (CSma<br>(CSmin), P0119, P0134, P0501, P04 | 1, P0103,<br>0C, P010<br>36 (Bnpl),<br>1, P0236 (<br>8, P0237,<br>6, P0497,<br>7, P000D<br>0, P0013,<br>92, P0020<br>22, P0020<br>064D (ma:<br>ig), P223<br>131, P224<br>0, P0116<br>ax), P0116<br>500, P213 | P0102,<br>A,<br>P0236<br>Psig),<br>P06A6,<br>P0300,<br>, P0024,<br>P000B,<br>, P0030,<br>, P0030,<br>x),<br>7 (max),<br>13,<br>(Pmax),<br>5 |
|                  |               |                                  |                      |                    | Fault codes that disable P0430 | P014A, P0158, P0157, P0161, P015<br>P0058, P0057, P0056, P2272, P227<br>P2179, P2180, P0103, P0102, P010<br>P00BC, P010D, P010C, P010A, P00<br>P010B, P0101, P2189, P2190, P023<br>(Bsig), P0236 (Pmax), P0236 (Pmin)<br>P0236 (Bmax), P0236 (Bmin), P023<br>P0496, P0497, P0153, P2234, P262<br>P00D3, P0052, P0051, P0050, P064<br>(min), P064E (npl), P064E (sig), P22<br>(npl), P2240 (sig), P0152, P0151, P2<br>P0150, P2197, P2198, P0173, P011<br>P000D, P0024, P2095, P2094, P002<br>P0013, P000B, P0014, P000C, P002<br>P0020, P2089, P2088, P0010, P000<br>(Pmax), P0126, P0116 (Pnpl), P0114<br>(CSmin), P0459, P0458, P0444                                        | 3, P0496,<br>0, P00BD<br>0BF, P00E<br>66 (Bnpl),<br>1, P0236 (<br>8, P0237,<br>9, P0155,<br>140 (max),<br>2247, P22<br>247, P22<br>3, P2091<br>21, P2093<br>A, P0011<br>6 (CSmax                             | P0497,<br>,<br>BE,<br>P0236<br>Psig),<br>P06A6,<br>P00D3,<br>P064E<br>P2240<br>54,<br>P0154,<br>, P2090,<br>, P2092,<br>, P0116<br>), P0116 |

and the JAGUAR

RLKTDMN minimum relative air charge for catalyst diagnosis P0420 - Catalyst efficiency bank A P0430 - Catalyst efficiency bank B

| input x  | rpm | 1080 | 1200 | 1520 | 2000 | 2200 |
|----------|-----|------|------|------|------|------|
| output w | %   | 17   | 17   | 18   | 22   | 25   |

RLKTDMX maximum relative air charge for catalyst diagnosis P0420 - Catalyst efficiency bank A P0430 - Catalyst efficiency bank B

| input x  | rpm | 1080 | 1200 | 1520 | 2000 | 2200 |
|----------|-----|------|------|------|------|------|
| output w | %   | 60   | 70   | 75   | 75   | 75   |

KFOSCD calculation of borderline OSC, 1st cat. bank 1/2 / map of end of life catalyst
P0420 - Catalyst efficiency bank A
P0430 - Catalyst efficiency bank B

|          |      | y x | 450  | 500  | 550  | 600  | 650  | 700  | 750  | 800  |
|----------|------|-----|------|------|------|------|------|------|------|------|
| input x  | °C   | 20  | 12.8 | 13.6 | 14.4 | 15.2 | 16   | 16.8 | 17.6 | 17.6 |
| input y  | kg/h | 30  | 12.8 | 13.6 | 14.4 | 15.2 | 16   | 16.8 | 16.8 | 17.6 |
| output w | mg   | 40  | 12.8 | 12.8 | 13.6 | 15.2 | 15.2 | 16   | 16.8 | 16.8 |
|          |      | 50  | 12   | 12.8 | 13.6 | 14.4 | 15.2 | 16   | 16   | 16   |
|          |      | 60  | 12   | 12.8 | 13.6 | 14.4 | 15.2 | 15.2 | 16   | 16   |
|          |      | 80  | 12   | 12.8 | 13.6 | 14.4 | 14.4 | 15.2 | 15.2 | 16   |
|          |      | 100 | 12   | 12.8 | 12.8 | 13.6 | 14.4 | 14.4 | 15.2 | 15.2 |
|          |      | 130 | 11.2 | 12   | 12.8 | 13.6 | 13.6 | 14.4 | 14.4 | 15.2 |



#### 4. Misfire Monitoring

#### 4.1. Fault Codes

- P0300 Random Misfire Detected
- P0301 Cylinder 1 Misfire Detected
- P0302 Cylinder 2 Misfire Detected
- P0303 Cylinder 3 Misfire Detected
- P0304 Cylinder 4 Misfire Detected
- P0305 Cylinder 5 Misfire Detected
- P0306 Cylinder 6 Misfire Detected
- P0307 Cylinder 7 Misfire Detected (V8 only)
- P0308 Cylinder 8 Misfire Detected (V8 only)
- P1315 Misfire with the potential for Catalyst Damage

#### 4.2. System Overview

The misfire detection monitor runs continuously and is designed to detect levels of misfire that can cause thermal damage to the catalyst or result in excessive tailpipe emissions. Determination of a misfire is made by analysis of changes in crankshaft speed, since a misfire will cause a fall in speed after a faulty firing event. This data is processed by three main algorithms to ensure the detection of all possible combinations of misfire.

The results of the misfire judgment process for each firing event are used to determine whether two failure levels have been met, 'catalyst damage' misfire and 'excess emissions' misfire. Each fault judgment process has its own failure threshold and calculation period.



The misfire monitor operates continuously within the boundaries of the regulated monitor operation window, as shown below.

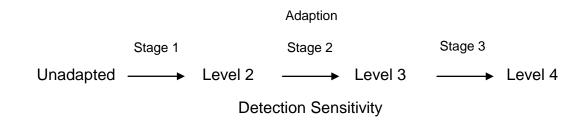
## Region of misfire monitor operation

After engine start, the monitor will be enabled as soon as the engine speed rises above the minimum operation speed (150 rpm below fully warm stabilised idle speed). 2 revolutions of crank angle data, i.e. one sample of data from each cylinder firing, must then be 'buffered' before any decisions can be made by the monitor.

#### 4.3. Strategy Description

## 4.3.1. Introduction

Different sections of the monitor operate at different 'loop' rates. 4.4 details the decisions made for each firing event in approximate chronological order, although some steps may not be made every 'loop'. Further explanation of these decisions is given below:


## 4.3.2. Recording segment time and position, and its manipulation

The monitor utilises a 60 tooth trigger wheel with 2 missing reference teeth and an inductive sensor. From the crank signal a 'crankshaft segment time' is formed from a relevant combustion stroke. This measurement is taken over a set crankshaft rotation (segment) whose length and starting point relative to TDC can be defined. The segment times of firing and non-firing events will be different. The combination of starting point and segment period can be optimized to maximize this difference and generate the most robust misfire detection possible. The segment time for each combustion stroke is then held in a buffer and is used to form an 'engine roughness measure'. This roughness value is used in the misfire judgment decision.

Due to the differing combustion conditions found during catalyst heating, a separate definition of start point and crank duration can be used which will improve post start misfire detection.

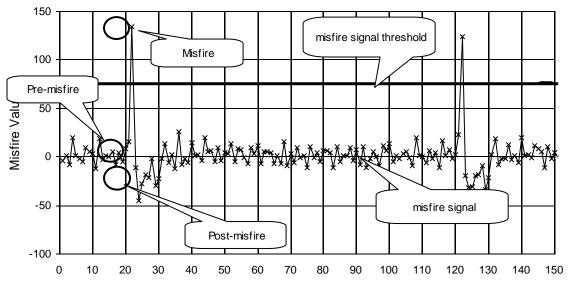
#### 4.3.3. Adjustment of crank angle tolerance/engine roughness values

To accommodate for differences in production tolerances and combustion influences 'crankshaft adaption' can be applied to refine segment times and roughness values. The whole adaption process operates in three stages, each stage being designed to improve detection and produces four levels of sensitivity as shown below.



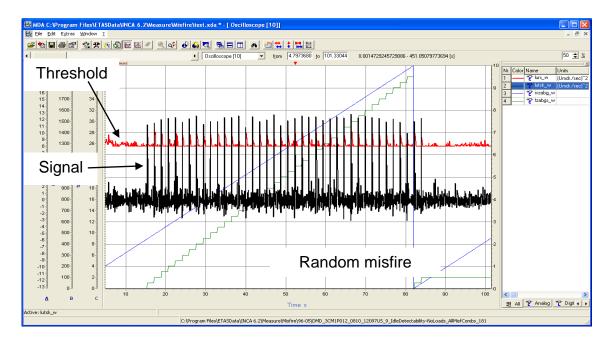
Stage one is a 'fuel off' adaption, accounts for mechanical differences such as irregular tooth profile and occurs during fuel cut off conditions. Stage one must be completed before any other adaption stage can begin. Stages two and three are a 'fuel on' condition and introduce the influences of combustion and apply over a speed and load matrix. Stage two will apply the same adaption for all loads at a particular speed that have been derived from a 'dominant' load site. Once this dominant adaption has been completed stage three adaption is allowed and will occur at the individual load points at that particular speed. The actual adaption value is calculated through interpolation of the relevant speed and load values in this matrix. Since there can be a mixture of adaption states, when interpolating the lowest adaption status of the calculation group is used.

Stage one adaption is applied to the crank segment times with stage two and three being applied to the processed engine roughness values and are cylinder specific.

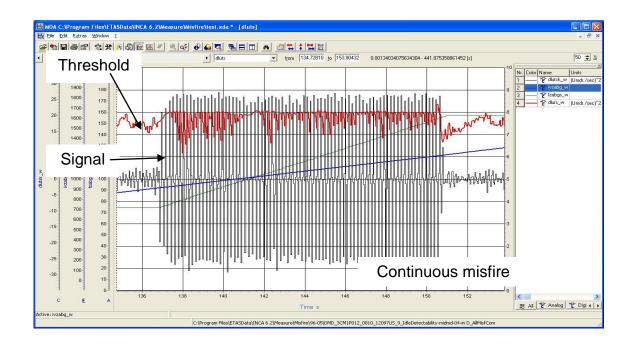

A separate adaption process is performed for the alternative catalyst heating segment set up.

## 4.3.4. Storing adaption values in back-up memory

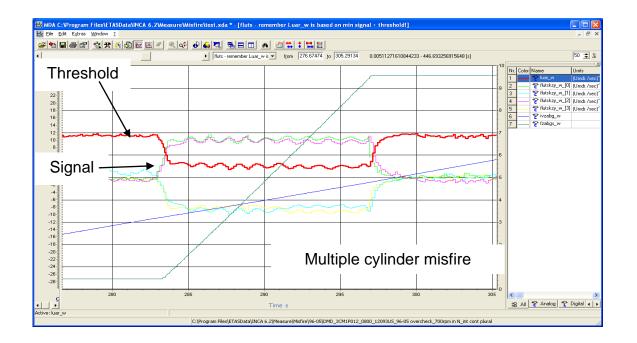
Adaption values are kept in non-volatile memory, which can only be reset by a service tester. Upon 'ignition on' these adaption values are copied to a backup memory and are initially used to calculate any signal corrections. The adaption procedure is controlled by a set of strict constraints. These safeguards ensure that where fault conditions, irregular running, dynamic effects or misfiring conditions are present, adaption will not occur and the process will be suspended or reset. If conditions are satisfied and sufficient adaption data is available then the backup adaption values can be updated. Upon 'ignition off' these backup values are used to update the non-volatile memory, thus being retained for the next trip.


#### 4.3.5. Misfire 'signal' calculation and misfire judgement

The three detection algorithms consist of a main method with two support methods which are specifically designed to detect certain 'patterns' of misfire. All methods operate using an 'OR' authority, the combination of which aims to maximize misfire detection probability. The basic misfire signal and decision process is as below




Cylinder Firing Number (90° crank angle logging)


The main method will manipulate the crankshaft segment time into the engine roughness value by comparison of the segment times of two consecutive combustions for each cylinder. This value is then compared to a speed / load threshold and if this is exceeded, a misfire judgment is declared.



One of the support methods compares engine roughness values staggered by 360° crank angle and compares the result to a separate speed / load based threshold. This function enhances the ability to detect random and continuous misfire patterns on rotating cylinders.



The second support method is designed to aid in the detection of continuous misfire of one or more cylinders. It utilizes a low pass filter on the individual cylinder roughness values and compares this to a speed / load based threshold.

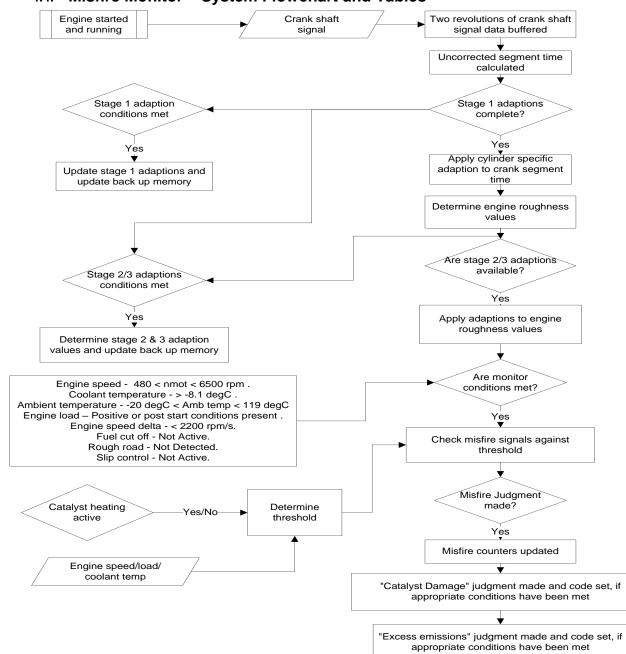


The relevant thresholds for all methods can be altered by a coolant based factor to allow for warm up effects on combustion. During catalyst heating the threshold can be adjusted to compensate for the differing combustion conditions to allow detection levels to be optimized. With each misfire judgment a cylinder counter is updated and used in later analysis.

#### 4.3.6. Catalyst damage judgement

**P1315 and specific misfiring cylinder codes**. If 200 revolutions of misfire judgments have been made the monitor will make an assessment as to whether 'catalyst damage' levels of misfire have been exceeded or not. The failure level is determined from a look up table. The sum of individual cylinder misfire counters is then compared against this threshold.

#### 4.3.7. Excess emissions judgement


**P0300 and specific misfiring cylinder codes**. An 'excess emission judgment' is made over a 1000 revolution period. The monitor will make an assessment as to whether 'emissions failure' levels of misfire have been exceeded or not. The failure level is a single threshold value. The sum of individual cylinder misfire counters is compared against this threshold and if exceeded a fault decision made. The declaration will be made as soon as the threshold is passed and does not wait until the end of the 1000 revolution block.

#### 4.3.8. Monitor execution check

Different monitor enable conditions are checked depending upon the operating condition of the engine (for example, fewer conditions apply during engine start). If all the appropriate enable conditions are met the monitor execution flag is set.

#### 4.3.9. Rough road

A rolling average of 'delta' wheel speed data is calculated from ABS vehicle speed data that is transmitted over the CAN network. This data is compared to calibrated thresholds to determine if the vehicle is being driven over a rough surface that causes misdiagnosis of a misfire. If a rough road judgment is made the appropriate flag is set and taken into account the next time monitor execution conditions are checked.

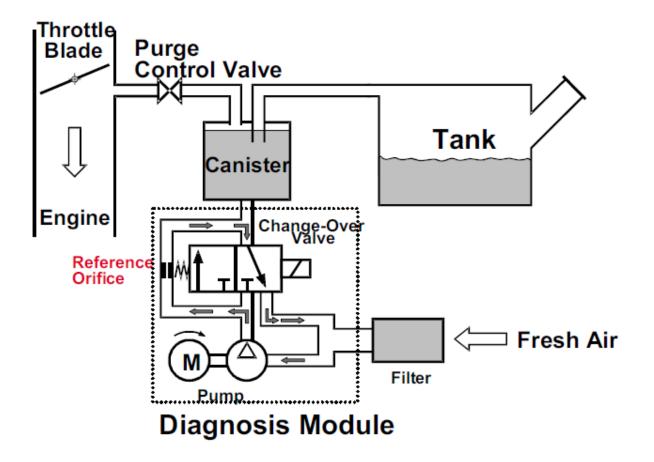




|                           |               |                                  | Misfire Mo                       | onitoring          |                                |                                  |                     |                  |
|---------------------------|---------------|----------------------------------|----------------------------------|--------------------|--------------------------------|----------------------------------|---------------------|------------------|
| Component/System          | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria             | Threshold<br>Value | Secondary Parameters           | Enable Conditions                | Time<br>Req.        | MIL illum        |
| lisfire Monitoring        |               |                                  |                                  |                    |                                |                                  |                     |                  |
| (DMDMIL)                  |               | Crank speed fluctuation          | Misfire at catalyst damage level | > See Misfire      | Engine speed -                 | 480 < nmot < 6500 rpm            |                     |                  |
| Random Misfire Detected   | P0300         |                                  | (200 rev block)                  | Charts Below       | Coolant temperature -          | > -8.1 °C                        | Depends             | 1 Drive<br>Cycle |
| Misfire cylinder 1        | P0301         |                                  | or                               |                    | Ambient temperature -          | -20 °C < tumg < 119 °C           | on engine           |                  |
| Misfire cylinder 2        | P0302         |                                  | Misfire at excess emissions      | > 2.60 %           | Engine load -                  | Positive or post start condition | speed,              | catalyst         |
| Misfire cylinder 3        |               |                                  | level:                           |                    | Engine speed delta -           | < 2200 rpm/s                     | misfire             | damage           |
| Misfire cylinder 4        | P0304         |                                  |                                  |                    | Fuel cut off -                 | Not Active.                      | pattern<br>and time |                  |
| Misfire cylinder 5        | P0305         |                                  |                                  |                    | Altitude -                     | < 9900 ft                        | and time            | 2 Drive          |
| Misfire cylinder 6        | P0306         |                                  |                                  |                    |                                |                                  | engine              | Cycles           |
| Misfire cylinder 7        |               |                                  |                                  |                    |                                |                                  | start               | for exces        |
| Misfire cylinder 8        | P0308         |                                  |                                  |                    |                                |                                  |                     | emissior         |
|                           |               |                                  |                                  |                    | Rough road -                   | Not Detected                     |                     |                  |
| Catalyst damaging misfire | P1315         |                                  |                                  |                    | Slip control -                 | Not Active                       |                     |                  |
| Misfire at low fuel level | P131A         |                                  |                                  |                    |                                |                                  |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0300 | P0336, P0335                     |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0301 | P0351, P2301, P2300              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0302 | P0352, P2304, P2303              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0303 | P0353, P2307, P2306              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0304 | P0354, P2310, P2309              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0305 | P0355, P2313, P2312              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0306 | P0356, P2316, P2315              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0307 | P0357, P2319, P2318              |                     |                  |
|                           |               |                                  |                                  |                    | Fault codes that disable P0308 | P0358, P2322, P2321              |                     |                  |

## Catalyst Damage Misfire Percentage

|           |     |      | E    | ingine Sp | eed rpm |      |      |
|-----------|-----|------|------|-----------|---------|------|------|
|           |     | 1480 | 2240 | 3000      | 4000    | 5000 | 5760 |
| р<br>%    | 20% | 5.5% | 5.5% | 5.5%      | 5.5%    | 2.5% | 2.5% |
| Load<br>% | 25% | 5.5% | 5.5% | 2.5%      | 2.5%    | 2.5% | 2.5% |
|           | 30% | 5.5% | 5.5% | 2.5%      | 2.5%    | 2.5% | 2.5% |
| Engine    | 45% | 5.5% | 2.5% | 2.5%      | 2.5%    | 2.5% | 2.5% |
| Ш         | 60% | 5.0% | 2.5% | 2.0%      | 2.0%    | 2.5% | 2.5% |
|           | 80% | 5.0% | 5.0% | 2.5%      | 2.5%    | 2.5% | 2.5% |




#### 5. Evaporative System Monitoring

#### 5.1. Fault Codes

- P0442 Evaporative Emission System Leak Detected (small leak)
- P0456 Evaporative Emission System Leak Detected (very small leak)
- P0457 Evaporative Emission System Leak Detected (fuel cap loose/off)
- P2406 Reference current high (See Summary Table)
- P2405 Reference current low (See Summary Table)
- P2407 Reference current plausible (See Summary Table)
- P043F Reference current frequency high (See Summary Table)
- P043E Reference current frequency low (See Summary Table)
- P2404 COV current low (See Summary Table)
- P2402 Pump electrical high (See Summary Table)
- P2401 Pump electrical low (See Summary Table)
- P2400 Pump electrical open circuit (See Summary Table)
- P2420 COV electrical high (See Summary Table)
- P2419 COV electrical low (See Summary Table)
- P2418 COV electrical open circuit (See Summary Table)
- P240C Pump heater high (See Summary Table)
- P240B Pump heater low (See Summary Table)
- P240A Pump heater open circuit (See Summary Table)

#### 5.2. System Schematic

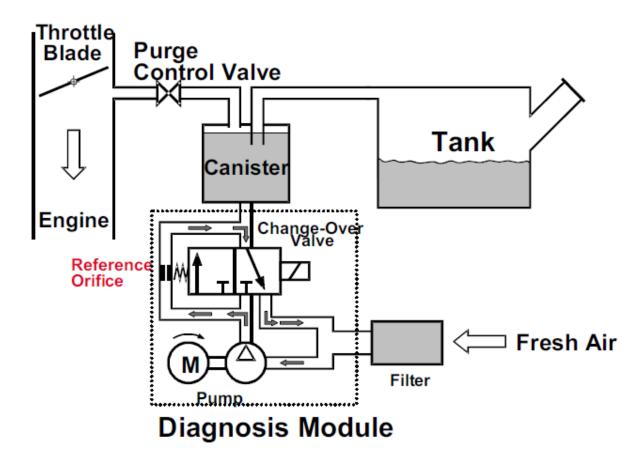


#### 5.3. System Description

The evaporative monitoring system being used permits the detection of leaks with a diameter of 0.5 mm (20 thousandths of an inch) or greater.

This is achieved by means of a pressure test of the system. This is performed by the Diagnostic Module - Tank Leakage (DMTL), which is an electrically operated pump fitted to the atmospheric air intake of the charcoal canister.

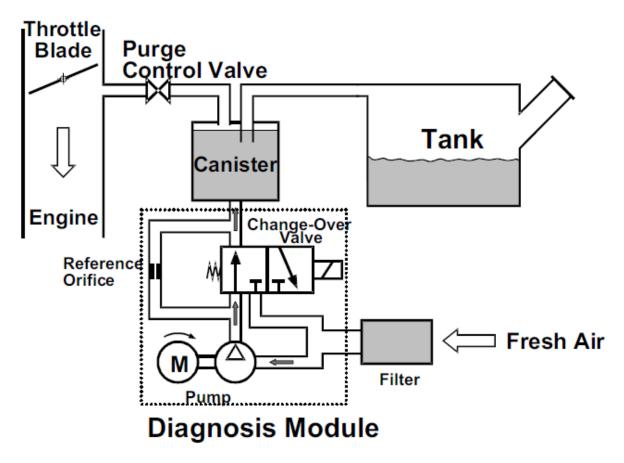
The test proceeds in 2 stages:


Reference Leak Measurement - The pump operates against the reference restriction within the DMTL. The Engine Control Module measures the current consumption and speed of the pump motor during this phase.

Leak Measurement - The solenoid in the DMTL is operated in order to shut off normal purge air flow into the charcoal canister. The pump can now pressurize the fuel tank and vapor handling system. The Engine Control Module again measures the current consumed and speed of the pump motor. A comparison based upon these parameters forms the basis of the Evaporative System Monitor.

The actual process is as shown in 5.5 Evaporative System Monitoring – System Flowchart

AGUAR


- 5.4. Fault Determination
  - 5.4.1. Reference Leak Measurement

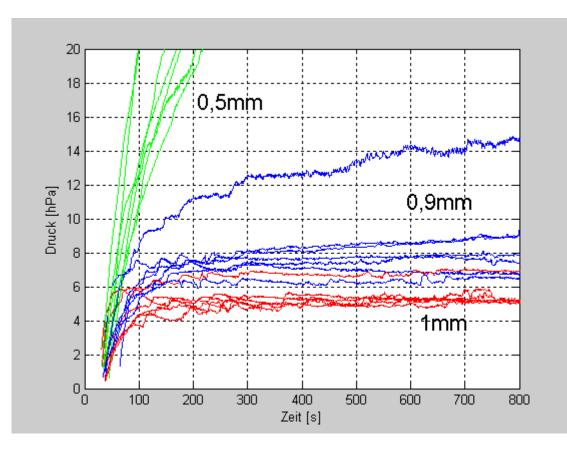


In the reference position the evaporative system is sealed off and the pump is forced to act through the reference orifice (0.5 mm). The pump speed and electrical pump current will depend on size of reference leak and these are measured. The volume flow of the pump will equal the volume flow of the leak and this can be determined from the pump speed. The actual volume flow depends upon ambient air temperature, ambient pressure and on the increased pressure due to the pump. From these measurements the actual pump pressure can be characterized from the pump current.



#### 5.4.2. Tank Measurement

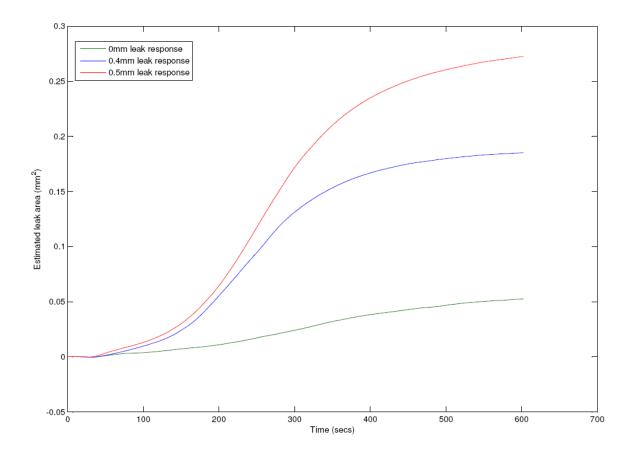



The valve is now changed to allow the pump to act on the tank side of the purge control valve. Again, in this case, the volume flow of the pump equals the volume flow of the leak. By comparing the pump current during the reference measurement and tank filling (relative current) an approximation to the tank pressure can be made.

#### 5.4.3. Fault Assessment

The actual fault analysis is split into a large leak check followed by a small leak check.

## 5.4.3.1. Small Leak / Rough Leak (> 0.040 inch)


In the case of a small leak the pressure in the tank will never reach a sufficiently high stabilized pressure (see below). A pressure comparison is made and if a stabilized tank pressure is below a threshold and this occurs within a 'actual leak test time' then a fault is declared.

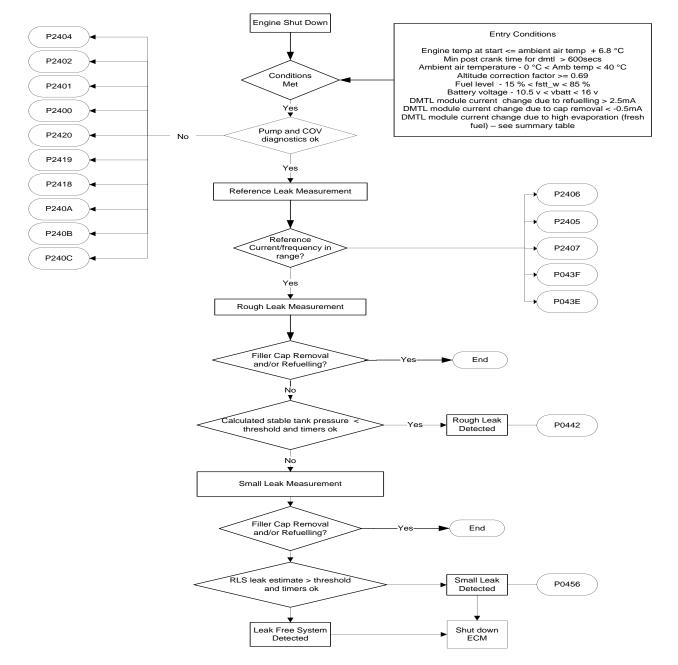


## 5.4.3.2. Very Small Leak (0.020 inch)

Due to the smaller tank pressure differential with a very small leak and sealed system an alternative algorithm is used. A recursive least squares (RLS) analysis of the system parameters (relative pressure and volume flow) are used to estimate a leakage size. Using this method separation of borderline leak states can be made (see below). The result of the leak is calculated when the tank pressure is greater than a threshold or the variance of the estimated area is smaller than a threshold and the minimum time of the test is over. If the estimated area is greater than a threshold then a leak is found else a tight system is declared.

The logic for MIL illumination and storage of service \$03 (confirmed), \$07 (fault during present or last completed drive cycle) or \$0A (permanent) fault codes follows the normal OBD II rules, with two fails leading to a MIL and a confirmed DTC.




## 5.4.3.3. Fuel Cap Warning Message

Since incorrect fastening of the gas cap can often result in MIL illumination and storage of a leak fault. Jaguar Land Rover displays a message on the instrument pack that states "Check Fuel Filler Cap" or "Check Filler Cap".

The message appears when the diagnostic first flags, giving the customer the opportunity to check the gas cap before the diagnostic runs again and leads to MIL illumination. The message will not be displayed at the next key on.

## 5.4.3.4. Filler Cap Removal and Re-Fueling

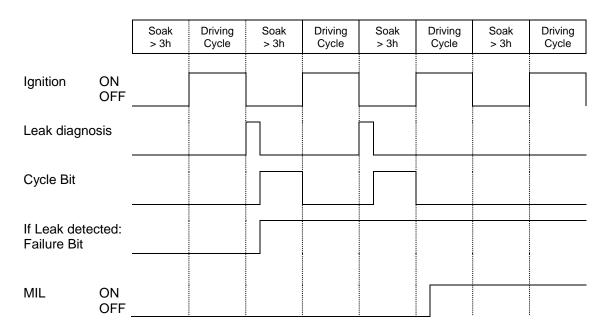
In the case where the tank cap is opened during the DMTL diagnosis the tank pressure drops to atmospheric pressure suddenly. A parallel drop in pump current is also seen. If a refueling should take place during a diagnostic routine the gas vapors displaced by the liquid cannot pass easily to the environment or be directed through the active charcoal filter as the DMTL valve is closed. Therefore pressure builds up in the tank rapidly, which can be recognized in the rapidly increasing pump current. To be able to detect both conditions a band-pass filtered pump current is used. When the tank cap is opened the current will fall under a threshold and an open tank cap declared. During refueling the filtered pump current rises above a threshold and a refueling event is declared.



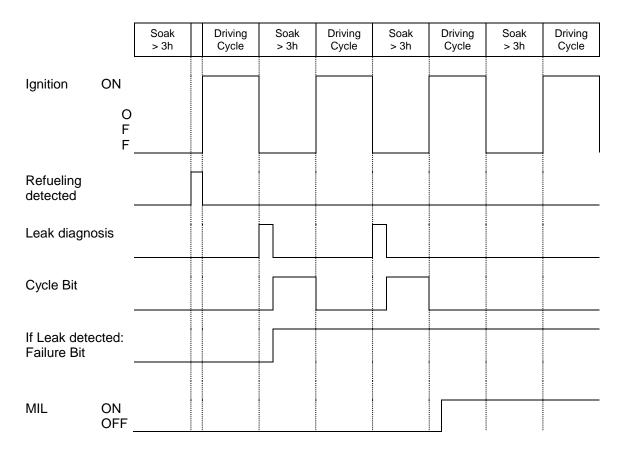
## 5.5. Evaporative System Monitoring – System Flowchart and Tables

| Fuel Evaporative Leak Monitoring    |               |                                   |                                                                                         |                                              |                                                                           |                                                                                            |                     |               |  |  |
|-------------------------------------|---------------|-----------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------|---------------|--|--|
| Component/System                    | Fault<br>Code | Malfunction Strategy Description  | Malfunction Criteria                                                                    | Threshold<br>Value                           | Secondary Parameters                                                      | Enable Conditions                                                                          | Time<br>Req.        | MIL<br>illum. |  |  |
| Fuel Evaporative Leak<br>Monitoring |               |                                   |                                                                                         |                                              |                                                                           |                                                                                            |                     |               |  |  |
| rough leak TESG                     | P0442         | Pressure test of system using ECM | Tank pressure change stable and                                                         | < 0.05 KPa                                   | Engine temp at start -                                                    | <= ambient air temp (tumg) + 6.75<br>°C                                                    | From                | 2 Drive       |  |  |
| (DDMTLDFC)                          |               | driven pump                       | Tank pressure and                                                                       | < 0.9 KPa                                    | Min post crank time for dmtl -                                            | > 600 s                                                                                    | 200 s               | Cycles        |  |  |
| · · · · ·                           |               |                                   | Time without pressure change and                                                        | > 25 s                                       | Ambient temperature -                                                     | 0 °C < tumg < 40 °C                                                                        | to                  |               |  |  |
|                                     |               |                                   | Actual leak test time                                                                   | > 200 s                                      | Altitude -                                                                | < 8369 ft                                                                                  | 400 s               |               |  |  |
| small leak DMTK                     | P0456         |                                   | Estimated leakage area and                                                              | > 0.18 mm2                                   | Fuel level -                                                              | 15 % < fstt_w < 85 %                                                                       |                     |               |  |  |
|                                     |               |                                   | Tank pressure and                                                                       | < 6.5 KPa                                    | Battery voltage - 1                                                       | 10.7 v < vbatt < 16. 1 v                                                                   | From<br>300 s<br>to |               |  |  |
|                                     |               |                                   | Actual leak test time and                                                               | > 850 s                                      | DMTL module current change due to refueling -                             | > 1.2 mA                                                                                   |                     |               |  |  |
|                                     |               |                                   | Tank pressure                                                                           | < ref tank<br>pressure<br>(prediff_w) *<br>2 | DMTL module current change due<br>to cap removal -                        | < -0.5 mA                                                                                  | 740 s               |               |  |  |
| Reference current                   |               |                                   |                                                                                         |                                              | DMTL module current change due                                            |                                                                                            |                     |               |  |  |
| high <i>DMTLmax</i>                 | P2406         |                                   | DMTL module current                                                                     | > 40 mA                                      | to high evaporation (fresh fuel) -                                        | See KLDRIPAB (table)                                                                       |                     |               |  |  |
| low DMTLmin                         | P2405         |                                   | DMTL module current                                                                     | < 15 mA                                      |                                                                           |                                                                                            |                     |               |  |  |
| plausible DMTLsig                   | P2407         |                                   | During reference stage : if DMTL<br>module current max minus<br>DMTL module current min | > 0.6 mA                                     |                                                                           |                                                                                            |                     |               |  |  |
| Reference current frequency         |               |                                   |                                                                                         |                                              |                                                                           |                                                                                            |                     |               |  |  |
| high DMTLFREQmax                    | P043F         |                                   | During reference stage : if DMTL<br>module current frequency                            | > 120 Hz                                     |                                                                           |                                                                                            |                     |               |  |  |
| low DMTLFREQmin                     | P043E         |                                   | During reference stage : if DMTL<br>module current frequency                            | < 60 Hz                                      |                                                                           |                                                                                            |                     |               |  |  |
| plausible DMTLnpl                   | P2404         |                                   | Difference DMTL module current<br>between ref and idle states                           | <= 2 mA                                      |                                                                           |                                                                                            |                     |               |  |  |
|                                     |               |                                   |                                                                                         |                                              | Fault codes that disable P2406,<br>P2405, P2407, P043F, P043E or<br>P2404 | P2400, P0688, P2419, P0118,<br>P0117, P0116 (Pnpl), P0116<br>(Pmax), P0119, P0116 (CSmax), |                     |               |  |  |
|                                     |               |                                   |                                                                                         |                                              |                                                                           | P0126, P0116 (CSmin), P0501,<br>P0500, P0459, P0458, P0444                                 |                     |               |  |  |

| Fuel Evaporative Leak Monitoring |                                                            |               |                                                                                                                      |                                                                                                                                                                         |                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                              |                   |
|----------------------------------|------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|
| Compon                           | nent/System                                                | Fault<br>Code | Malfunction Strategy Description                                                                                     | Malfunction Criteria                                                                                                                                                    | Threshold<br>Value | Secondary Parameters                                                                                                                                                                                                       | Enable Conditions                                                                                                                                                                                                                                                                                     | Time<br>Req.                 | MIL<br>illum.     |
| Leak Detection                   | on (cont)                                                  |               |                                                                                                                      |                                                                                                                                                                         |                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                              |                   |
| Open gas o                       | cap during driving<br><i>CFCmax</i><br>(DDMTLCGC)          | P0457         | Check filler cap diagnostic ran<br>during driving after a rough leak or<br>small leak or refueling event<br>detected | The leak check diagnostic is forced<br>to run under driving conditions. If a<br>leak is flagged then 'Check Fuel<br>Filler Cap' is displayed in the<br>instrument pack. |                    | Vehicle speed -<br>Min post crank time for -<br>Ambient pressure pu_w minus<br>stored ambient pressure<br>Rough leak set<br>Or<br>Refueling detected by fuel level<br>sensor<br>Fault codes that disable P0442 or<br>P0456 | 25 mph < vfzg < 75 mph<br>> 600 s<br>-0.15 KPa  B_edmtg = 1 <u>and</u> rough leak cycle<br>flag B_zdmtg = 1<br>P2420, P2418, P2402, P2401,<br>P2400, P0688, P0501, P0500,<br>P2419, P0118, P0117, P0116<br>(Pmax),P0126, P0116 (Pnpl),<br>P0116 (CSmax), P0116 (CSmin),<br>P0119, P0459, P0458, P0444 | From<br>200 s<br>to<br>400 s | No                |
|                                  | ontinuity checking<br>k detection pump                     |               |                                                                                                                      |                                                                                                                                                                         |                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                              |                   |
|                                  | high DMPMEmax<br>low DMPMEmin<br>DMPMEsig                  | P2401         | Short to ground                                                                                                      | Power stage internal check                                                                                                                                              |                    | Leak detection module state -                                                                                                                                                                                              | operating                                                                                                                                                                                                                                                                                             | 0.2s                         | 2 Drive<br>Cycles |
| valve                            | high DMMVEmax<br>low DMMVEmin<br>DMMVEsig                  | P2419         | Short to ground                                                                                                      | Power stage internal check                                                                                                                                              |                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                              |                   |
| heater circuit                   | high DHDMTEmax<br>Low DHDMTEmin<br>DHDMTEsig<br>(DDMTLHWE) | P240B         | Short to ground                                                                                                      | Power stage internal check                                                                                                                                              |                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                       |                              |                   |


#### Fuel Fuel Evaporative Leak Monitoring

**KLDRIPAB** - Value to abort the test due to high evaporation or high fuel level

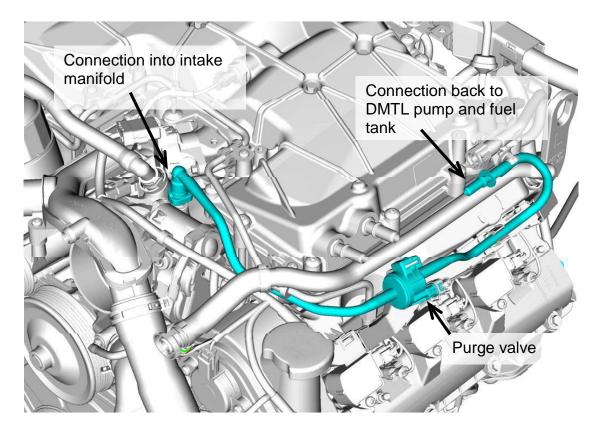

| input x  | mA | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 | 8.00 | 9.00 |
|----------|----|------|------|------|------|------|------|------|------|
| output w |    | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 | 0.14 |

# 5.6. Diagnosis Frequency and MIL Illumination

# No refueling detected; leak > 0.040"



# After refueling detected; leak > 0.020"




### 6. Purge Valve Monitoring

#### 6.1. Fault Codes

- P0496 Evaporative Emission System High Purge Flow
- P0497 Evaporative Emission System Low Purge Flow
- P0444 Evaporative Emission System Purge Control Valve A Circuit Open
- P0458 Evaporative Emission System Purge Control Valve Circuit Low
- P0459 Evaporative Emission System Purge Control Valve Circuit High

### 6.2. System Schematic



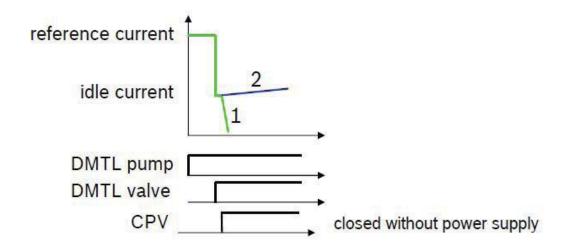
### 6.3. System Description

The purge diagnostic uses the DMTL pump to apply pressure into the purge system whilst the engine is running. It runs once per trip and requires the completion of a valid fault free tank leak check to have been completed. The basis to the fault analysis, as with the tank diagnostic, is the measurement and analysis of the pump current. Again comparisons of system measurements against a reference measurement are used.

#### 6.4. Fault Determination

#### 6.4.1. Reference Leak Measurement

This is performed during the tank leak diagnostic. The values for reference current and idle current are measured in a similar manner to that shown below. The difference between these currents is stored.


#### 6.4.2. Purge System Measurement

During the purge test the DMTL pump is initially activated in the reference condition i.e. through the reference orifice only. A new reference current for the purge test is determined from this and is independent of the tank leak reference measurement. Following the reference current measurement an 'idle current' is measured. This is the result of the current obtained shortly after the DMTL solenoid is opened allowing the pump to act on the evaporative system with the CPV closed. Shortly after a stable idle current has been established the CPV is opened with three possible outcomes.

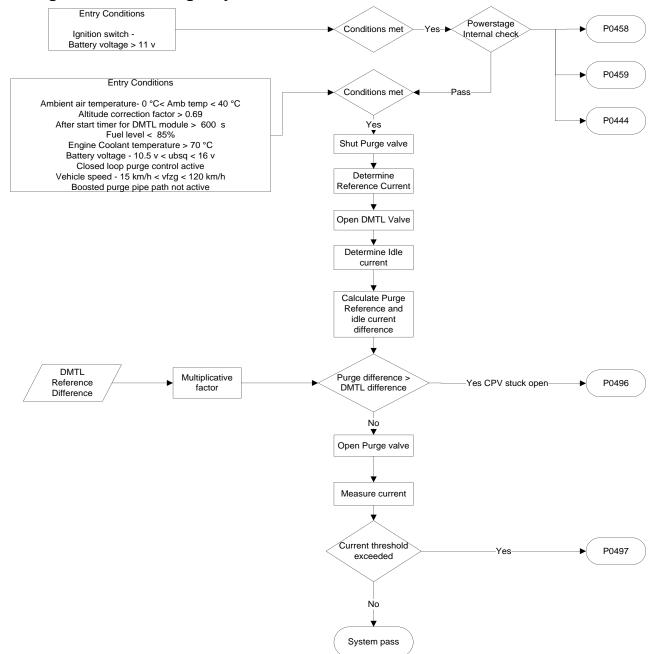
CPV and purge line ok. If the pump current decreases sharply this indicates that the purge valve has opened and that the purge lines are not blocked because the pump is being asked to do little work (i.e. build up pressure).

CPV stuck closed or purge lines are blocked. If the current slowly increases, then pressure is being produced which indicates either a stuck valve or blocked purge pipes.

CPV stuck open. In this case the pump will be acting on the pressure in the purge pipe system. Under non-boost conditions this will be manifold pressure and in this case the idle current will be lower than that for a normal system.



Results: 1 CPV and line to turbo OK 2 CPV stuck closed or defect line to turbo


### 6.4.3. Fault Assessment

### 6.4.3.1. CPV stuck open

**P0496**. A comparison is made based upon the difference between the reference and idle current measured under this condition and that stored during the tank diagnostics. For a stuck open condition this difference will be greater than that for the reference condition. If the measured difference is greater than the reference difference multiplied by a calibration factor then a fault is declared.

# 6.4.3.2. CPV stuck closed or purge lines are blocked

**P0497.** Following the CPV test closure the pump current is measured. For a good system this current should drop below a current threshold, but if this threshold is exceeded for a time period then this indicates a faulty system and a fault is declared.



#### 6.5. Purge Flow Monitoring – System Flowchart and Tables

|                            |               |                                         | Purge Valve M                                         | Monitoring         |                                   |                        |              |               |
|----------------------------|---------------|-----------------------------------------|-------------------------------------------------------|--------------------|-----------------------------------|------------------------|--------------|---------------|
| Component/System           | Fault<br>Code | Malfunction Strategy Description        | Malfunction Criteria                                  | Threshold<br>Value | Secondary Parameters              | Enable Conditions      | Time<br>Req. | MIL<br>illum. |
| Evaporative Purge Valve    |               |                                         |                                                       |                    |                                   |                        |              |               |
| Circuit continuity TEVEmax | P0459         | Short to battery                        | Power stage internal check                            |                    | Ignition switch -                 | On                     | 0.2 s        | 2 Drive       |
| TEVEmin                    |               | - · · · · · · · · · · · · · · · · · · · |                                                       |                    | Battery voltage -                 | >10.7 v                |              | Cycles        |
| (DTEVE) TEVEsig            | P0444         | Open circuit                            |                                                       |                    |                                   |                        |              |               |
| Purge valve stuck closed   |               |                                         | As purge valve opens,                                 |                    | Ambient air temperature           | 3 °C < tumg < 37.5 °C  | 10 s         |               |
| TESmin                     |               | with engine running uses the            | if filtered DMTL module current =>                    |                    | Altitude                          | < 8752 ft              |              |               |
| (DTEDFPSV)                 |               | DMTL module as a pressure sensor        | Current threshold for minimum<br>error.               |                    | After start timer for DMTL module | > 600 s                |              |               |
|                            |               |                                         | The input to DITESMIN is the                          | DITESMIN           | Fuel level                        | < 85%                  |              |               |
|                            |               |                                         | difference between reference and                      | after              | Engine Coolant temperature        | > 70 °C                |              |               |
|                            |               |                                         | idle obtained from the DMTL<br>reference measurement. | 5 s                | Battery voltage                   | 10.5 v < vbatt < 16 v  |              |               |
|                            |               |                                         | reference measurement.                                |                    | Closed loop purge control active  |                        |              |               |
|                            |               |                                         |                                                       |                    | Vehicle speed                     | 10 mph < vfzg < 75 mph |              |               |

#### DITESMIN - minimum difference current to detect minimum error TES

| input x  | mA | 2.00 | 4.00 | 6.00 | 8.00 | 9.00 |
|----------|----|------|------|------|------|------|
| output w | mA | 0.50 | 0.90 | 1.00 | 1.00 | 1.00 |

|                                                |               |                                                                                               | Purge Valve I                                                                                                           | Monitoring                                               |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |
|------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component/System                               | Fault<br>Code | Malfunction Strategy Description                                                              | Malfunction Criteria                                                                                                    | Threshold<br>Value                                       | Secondary Parameters                                   | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time<br>Req.                                                                                                                                                                                                                                                                                               | MIL<br>illum.                                                                                                                                                                       |
| Evaporative Purge Valve<br>(cont)              |               |                                                                                               |                                                                                                                         |                                                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                     |
| Purge valve stuck open<br>TESmax<br>(DTEDFPSV) |               | The Canister Purge System<br>with engine running uses the<br>DMTL module as a pressure sensor | When purge valve test active,<br>if DMTL pump current between ref<br>and idle > Current threshold for<br>maximum error. | DMTL<br>reference idle<br>current<br>difference x<br>1.2 | or P0497<br>Fault Codes that disable P0496<br>or P0497 | 0 °C< turng < 40 °C<br>< 9900 ft<br>> 600 s<br>< 85%<br>> 70 °C<br>10.7 v < vbatt < 16.1 v<br>10 mph < vfzg < 75 mph<br>P0103, P0102, P0100, P00BD, P00I<br>P010C, P010A, P00BF, P00BE, P01<br>P0507, P0506, P0505, P0236 (Bnpl)<br>P0236 (Pmax), P0236 (Pmin), P023<br>(Bmax), P0236 (Bmin), P0238, P003<br>P2405, P2404, P0501, P0500, P000<br>P2094, P0023, P2091, P2090, P001<br>P2176 (Unpl), P0153, P0133, P0000<br>P2092, P0020, P2089, P2088, P001<br>P0335, P2234, P2231, P0155, P00E<br>P0052, P0051, P0050, P0032, P003<br>P00D1 (npl), P00D1 (sig),<br>P064E (max), P064E (min), P064E (<br>P064D (max), P064D (min), P064D<br>P2629, P2626, P2240 (max), P2240<br>(sig), P2237 (max), P2237 (npl), P22<br>P0151, P0132, P0131, P2247, P224<br>P0150, P0130, P2197, P2198, P017<br>P0170, P0116 (Pmax), P0126, P011<br>(CSmax), P0116 (CSmin), P01458, P044<br>P2135, P0300, P0459, P0458, P044 | 10B, P010<br>), P0236 (<br>6 (Psig), F<br>37, P06A6<br>10, P0024<br>3, P0004<br>3, P0004<br>3, P0002<br>0, P0021,<br>0, P0021,<br>0, P0004<br>13, P0003<br>(npl), P06<br>(npl), P06<br>(npl), P06<br>(npl), P06<br>(npl), P06<br>(npl), P02<br>237 (sig),<br>3, P2254<br>3, P2195<br>6 (Pnpl),<br>0154, P0 | 11,<br>Bsig),<br>P0236<br>5, P2419<br>5, P2095,<br>, P0014,<br>P2093,<br>, P00135,<br>, P0135,<br>4E (sig),<br>,4D (sig),<br>240<br>P0152,<br>, P2251,<br>, P2196,<br>P0116<br>134, |

### 7. Fuel System Monitoring

#### 7.1. Fault Codes

P2187 - System Too Lean at Idle (Bank 1)

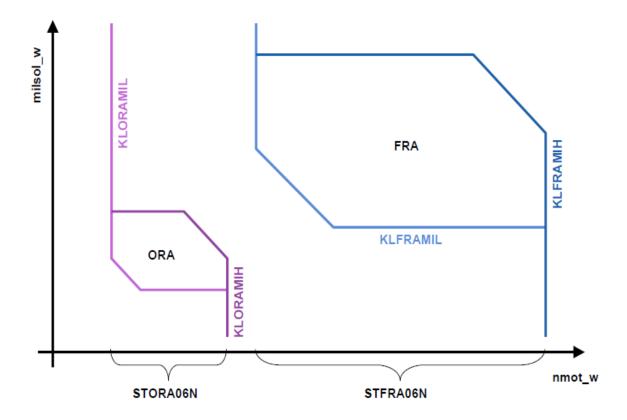
P2188 - System Too Rich at Idle (Bank 1)

P2189 - System Too Lean at Idle (Bank 2)

P2190 - System Too Rich at Idle (Bank 2)

P2177 - System Too Lean Off Idle (Bank 1)

P2178 - System Too Rich Off Idle (Bank 1)


P2179 - System Too Lean Off Idle (Bank 2)

P2180 - System Too Rich Off Idle (Bank 2)

## 7.2. System Description

The fuel system diagnostic monitors the long term fuel trim adaptions to check if any of the adaption points has reached its rich or lean limit indicating that no more adaption is possible. This will not immediately lead to higher emissions, because the short term fuel trim can take care of additional errors in the fuelling system.

The long term fuel trim is calculated from the UHEGO sensor, and is split into additive and multiplicative terms. The additive term (ORA) accounts for inlet air leaks and have a major influence at low air mass flows. The multiplicative term (FRA) accounts for mass flow, fuel pressure or temperature measurement errors and although it applies throughout the load and speed range, it is more prominent at higher measurement factors. The areas of *greater* prominence are as shown below.





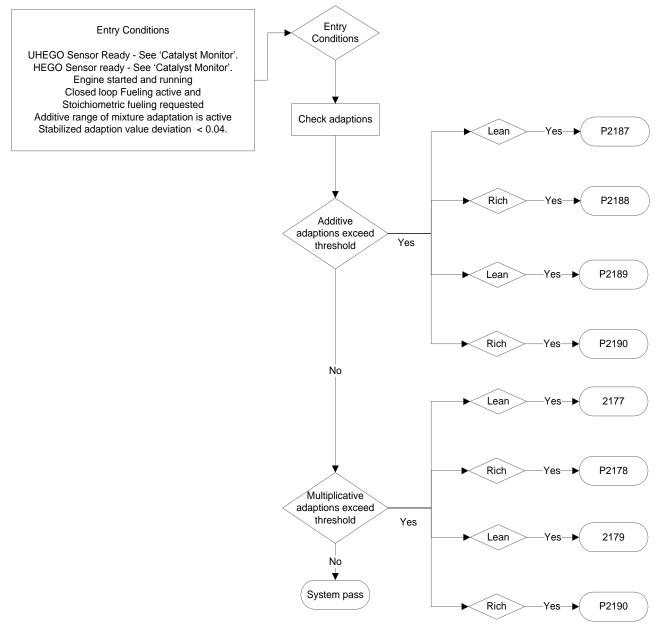
#### Below are some faults that illustrate cases which could cause higher emissions:

#### • Air leakage after the MAF sensor

If there is an air leakage after the MAF sensor, this will result in unmeasured air being added to the intake charge. The short term and long term fuel trim will adjust the fuel amount to achieve a homogenous A/F mixture, and if the leakage is large enough, the diagnostic will detect a lean fault. This fault has its greatest influence at low engine loads.

#### • Other faults leading to a lean Air-Fuel mixture

If for example there is a fault which results in decreased fuel, this could also affect the short term and long term fuel trim. If this difference from the target pressure is large enough, then the diagnostic will detect a lean fault. This fault has its greatest influence at high engine loads.


#### • MAF sensor which is biased rich

If the MAF sensor measures less air than is passing the sensor, then this will result in a rich combustion mixture. If the deviation is large enough, then the diagnostic will detect a rich fault.

#### • Other faults leading to a rich Air-Fuel mixture

If the fuel pressure regulator is faulty, the injectors are worn, or there is another fault which will result in a rich air-fuel mixture, then the diagnostic will detect a rich fault.

#### 7.3. Fuel System Monitoring – System Flowchart and Tables



|                  |               |                                  | Fuel System          | n Monitoring       | )                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
|------------------|---------------|----------------------------------|----------------------|--------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component/System | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters                                                    | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time<br>Req.                                                                                                                                                                                                                                                | MIL<br>illum.                                                                                                                                                                                      |
| Fuel System      |               |                                  |                      |                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| ORAmax           | P2187         | Fuelling adaptions at idle       | If excessively lean  | < -5.48 %          | UHEGO Sensor Ready -                                                    | See 'Catalyst Monitor'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.2 s                                                                                                                                                                                                                                                       | 2 Drive                                                                                                                                                                                            |
| ORAmin           | P2188         |                                  | If excessively rich  | > 5.48 %           | HEGO Sensors ready -                                                    | See 'Catalyst Monitor'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             | Cycles                                                                                                                                                                                             |
| ORA2max          | P2189         |                                  |                      |                    | Engine started and running -                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| ORA2min          | P2190         |                                  |                      |                    | Closed loop Fueling active and<br>Stoichiometric fueling<br>requested - | Active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| (DKVS)           |               |                                  |                      |                    | Additive range of mixture adaptation is active                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
|                  |               |                                  |                      |                    | Stabilized adaption value<br>deviation -                                | < 0.03 for 200ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| FRAmax           |               | Fuelling adaptions off idle      | If excessively lean  | < 0.77 %           | UHEGO Sensor Ready -                                                    | See 'Catalyst Monitor'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| FRAmin           | P2178         |                                  | If excessively rich  | > 1.23 %           | HEGO Sensors ready -                                                    | See 'Catalyst Monitor'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| FRA2max          | P2179         |                                  |                      |                    | Closed loop Fueling active and<br>Stoichiometric fueling<br>requested - | Active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
| FRA2min          | P2180         |                                  |                      |                    | multiplicative range of mixture adaptation is active.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                    |
|                  |               |                                  |                      |                    | Fault codes that disable Fuel<br>System monitoring                      | P054C, P054A, P000D, P0024, P209<br>P2091, P2090, P0013, P000B, P001<br>(Unpl), P0153, P0133, P052C, P0524<br>P2093, P2092, P0020, P2089, P2088<br>P0011, P0016 (MntErr), P0016 (Ofser<br>P0018 (Ofserr), P0017 (MntErr), P001<br>(MntErr), P0019 (Ofserr), P0336 (Errs<br>P2231, P0155, P00D3, P00D3, P005<br>P0032, P0031, P0030, P0135, P00D1<br>P064E (max), P064E (min), P064E (i<br>P064D (max), P064E (min), P064E (i<br>P064D (max), P064E (min), P064E (i<br>P2629, P2626, P2240 (max), P2240 (i<br>P2237 (max), P2237 (npl), P2237 (sig<br>P0132, P0131, P2247, P2243, P2255<br>P0130, P0040, P0300, P2197, P2196<br>P2196, P0170, P007B (max), P007<br>(CSmax), P007B (CSmin), P007D, P00<br>P0458, P0444, P0116 (CSmin), P01<br>P0154, P0134, P0459, P045 | 4, P2135,<br>A, P000C,<br>3, P0010,<br>r), P0018<br>7 (OfsErr)<br>g), P0335<br>2, P0051,<br>(npl), P035<br>2, P0051,<br>(npl), P04<br>npl), P064<br>(npl), P22<br>j), P0152,<br>4, P2251,<br>3, P0173,<br>7B (npl), P<br>7C, P007I<br>6, P0116<br>18, P0117 | P2176<br>P0021,<br>P000A,<br>(MntErr),<br>, P0019<br>, P2234,<br>P0050,<br>D1 (sig),<br>E (sig),<br>D (sig),<br>E (sig),<br>D (sig),<br>P0151,<br>P0150,<br>P2195,<br>007B<br>E, P0459,<br>(Pnpl), |

|                                                  |               |                                              | Fuel System I                                                                                     | Monitoring         |                                                                                                                    |                                                                                                                                                                                                                    |              |                   |
|--------------------------------------------------|---------------|----------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                                 | Fault<br>Code | Malfunction Strategy Description             | Malfunction Criteria                                                                              | Threshold<br>Value | Secondary Parameters                                                                                               | Enable Conditions                                                                                                                                                                                                  | Time<br>Req. | MIL<br>illum.     |
| Fuel System - Secondary<br>Feedback Adaption     |               |                                              |                                                                                                   |                    |                                                                                                                    |                                                                                                                                                                                                                    |              |                   |
| Bank A Sub feedback too lean<br>PLLSUmax         | P2195         | Sub feedback adaption<br>outside limit value | Sub feedback trim value                                                                           | > 0.07             | UHEGO Sensor Ready -<br>HEGO Sensors ready -                                                                       | See 'Catalyst Monitor'<br>See 'Catalyst Monitor'                                                                                                                                                                   | 0.2 s        | 2 Drive<br>Cycles |
| Bank A Sub feedback too rich<br>PLLSUmin         |               | Sub feedback adaption<br>outside limit value | Sub feedback trim value                                                                           | < -0.07            | Closed loop Fueling active and<br>Stoichiometric fueling requested                                                 | > 30 s                                                                                                                                                                                                             |              |                   |
| Bank B Sub feedback too lean<br>PLLSU2max        |               | Sub feedback adaption<br>outside limit value | Sub feedback trim value                                                                           | > 0.07             | for-                                                                                                               |                                                                                                                                                                                                                    |              |                   |
| Bank B Sub feedback too rich<br>PLLSU2min        | P2198         | Sub feedback adaption<br>outside limit value | Sub feedback trim value                                                                           | < - 0.07           |                                                                                                                    |                                                                                                                                                                                                                    |              |                   |
| (DPLLSU)                                         |               |                                              |                                                                                                   |                    | monitoring<br>Fault codes that disable bank 2<br>Secondary Fuel System<br>monitoring                               | P0032, P0031, P0030, P0135,<br>P00D1 (npl), P00D1 (sig), P064D<br>(max), P064D (min), P064D (npl),<br>P064D (sig), P2237 (max), P2237<br>(npl), P2237 (sig), P0132, P0131,<br>P2243, P2251, P0130, P0134,<br>P0040 |              |                   |
| Fuel System - Secondary<br>Trim                  |               |                                              |                                                                                                   |                    |                                                                                                                    |                                                                                                                                                                                                                    |              |                   |
| Bank A FTDLFnpl<br>Bank B FTDLFnpl2<br>(DLRHKFT) |               | Secondary fuel trim check                    | If the lamda trim offset from the<br>3 <sup>rd</sup> sensor exceeds a threshold<br>a fault is set | +/- 0.02           | UHEGO Sensor Ready -<br>HEGO Sensors ready -<br>Closed loop Fueling active and<br>Stoichiometric fueling requested | See 'Catalyst Monitor'<br>See 'Catalyst Monitor'<br>> 30 s                                                                                                                                                         | 0.2 s        | 2 drive<br>Cycles |
|                                                  |               |                                              |                                                                                                   |                    | Fault codes that disable P0170                                                                                     | P2274, P2275                                                                                                                                                                                                       |              |                   |
|                                                  |               |                                              |                                                                                                   |                    | Fault codes that disable P0173                                                                                     | P2276, P2277                                                                                                                                                                                                       |              |                   |

|                                                         | Fuel System Monitoring |                                  |                                                                                                                                           |                                                           |                                                                                                                                                                                 |                                                                                                                         |                        |               |
|---------------------------------------------------------|------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|
| Component/System                                        | Fault<br>Code          | Malfunction Strategy Description | Malfunction Criteria                                                                                                                      | Threshold<br>Value                                        | Secondary Parameters                                                                                                                                                            | Enable Conditions                                                                                                       | Time<br>Req.           | MIL<br>illum. |
| High Fuel Pressure System                               |                        |                                  |                                                                                                                                           |                                                           |                                                                                                                                                                                 |                                                                                                                         |                        |               |
| High Pressure Rise Time<br>S <i>THDRmax</i><br>(DSTHDR) |                        | pressure rise checked during     | If the system pressure during start<br>is below a pressure dependent on<br>temperature and engine revolutions<br>then a fault is declared | See<br>KFPROFSHD<br>(table)<br>and<br>KLRSTHDR<br>(table) | Engine temperature at start -<br>Fuel rail pressure -<br>High pressure start requested.<br>Condition hot start<br>(Fuel system has been able to heat<br>up/ fuel vaporization). | -48 °C < ect1 < 143 °C<br><= 2.1 MPa                                                                                    | Dependent<br>upon temp |               |
|                                                         |                        |                                  |                                                                                                                                           |                                                           |                                                                                                                                                                                 | P0251, P0254, P0088 (Rmax),<br>P0087 (Rmin), P0191 (Rnpl),<br>P0191 (Rsig), P0253, P0193,<br>P0192, P0256, P0259, P0258 |                        |               |

#### **KFPROFSHD** - Threshold for rail pressure

|          |     | y x  | -37 | -32  | -10  | 0   | 9   | 10  |
|----------|-----|------|-----|------|------|-----|-----|-----|
| input x  | °C  | 0.20 | 2.7 | 11.2 | 5.2  | 3.0 | 3.0 | 2.5 |
| input y  |     | 0.40 | 2.7 | 11.2 | 10.0 | 5.2 | 3.0 | 2.5 |
| output w | Мра | 0.80 | 2.7 | 11.2 | 10.0 | 5.2 | 3.0 | 2.5 |
|          |     | 0.95 | 2.7 | 11.2 | 10.0 | 5.2 | 3.0 | 2.5 |

KLRSTHDR - Number of synchros for waiting for high fuel pressure

| input x  | °C | -40 | -20 | 0  | 20 | 40 | 90 |
|----------|----|-----|-----|----|----|----|----|
| output w |    | 48  | 48  | 24 | 24 | 24 | 24 |

|                                         |               |                                                                                                                        | Fuel System                                                                                                                                                                                                             | Monitoring                                   |                                                                          |                                                                                                                                                                            |              |                   |
|-----------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                        | Fault<br>Code | Malfunction Strategy Description                                                                                       | Malfunction Criteria                                                                                                                                                                                                    | Threshold<br>Value                           | Secondary Parameters                                                     | Enable Conditions                                                                                                                                                          | Time<br>Req. | MIL<br>illum.     |
| High Fuel Pressure System<br>(cont)     |               |                                                                                                                        |                                                                                                                                                                                                                         |                                              |                                                                          |                                                                                                                                                                            |              |                   |
| Controller HDRPLmax<br>HDRPLmin         |               | Checks if the pressure control is<br>plausible. It looks to see if the<br>controller activity is within limits         | If a filtered value of the controller<br>output is above or below a<br>threshold then a fault is declared                                                                                                               | > 2 MPa<br>< -2 MPa                          | Engine started and running.<br>High fuel pressure regulation.            |                                                                                                                                                                            | 2 s          | 2 Drive<br>Cycles |
| Pressure HDRmax<br>HDRmin<br>(DKVBDEPL) |               | Checks if the pressure control is<br>plausible. It looks to see if the fuel<br>rail pressure activity is within limits | If a filtered value of the pressure<br>set point and actual pressure is<br>above or below a threshold then a<br>fault is declared                                                                                       | < -2.2 MPa<br>> 2.2 MPa                      | Fuel mass -<br>After start counter -<br>Not in fuel cut.                 | 5% < rkmeeff_w < 240%<br>> 2 s                                                                                                                                             |              |                   |
| Sensor range check<br>DSKVRmax          | P0088         | Out of range check                                                                                                     | Unfiltered rail pressure real value                                                                                                                                                                                     | > 22 MPa                                     |                                                                          |                                                                                                                                                                            | 1 s          |                   |
| DSKVRmin                                | P0087         | Out of range check                                                                                                     | Unfiltered rail pressure real value                                                                                                                                                                                     | < 0.1 MPa                                    |                                                                          |                                                                                                                                                                            |              |                   |
| (DDSKV)                                 |               |                                                                                                                        | for                                                                                                                                                                                                                     | 1 s                                          |                                                                          |                                                                                                                                                                            |              |                   |
| DSKVRnpl                                | P0191         | Pressure and fueling checks                                                                                            | If the relative rail pressure is below<br>a threshold before start an error<br>suspicion flag is set. If fueling<br>adaption is outside range then a<br>fuelling fault is suspected and<br>pressure plausible fault set | < 0.4 Mpa<br>for 30 s<br>< 0.85<br>< -2.48 % |                                                                          |                                                                                                                                                                            | 30 s         |                   |
| DSKVRsig                                | P0191         |                                                                                                                        | If the relative rail pressure is above<br>a threshold before start an error<br>suspicion flag is set. If fueling<br>adaption is outside range then a<br>fuelling fault is suspected                                     | > 1.5 MPa<br>> 1.15<br>> 3 %                 |                                                                          |                                                                                                                                                                            |              |                   |
|                                         |               |                                                                                                                        |                                                                                                                                                                                                                         |                                              | Fault Codes that disable P228E & P228F                                   | P0088 (PRmax), P0087 (PRmin),<br>P0087 (min), P0251, P0256,<br>P0254, P0259, P0253, P0258,<br>P0088 (VRmax), P0087 (VRmin),<br>P0191 (Rnpl), P0191 (Rsig),<br>P0193, P0192 |              |                   |
|                                         |               |                                                                                                                        |                                                                                                                                                                                                                         |                                              | Fault Codes that disable P0087 & P0088 (pressure rationality)            | P0251, P0256, P0254, P0259,<br>P0253, P0258, P0088 (Rmax),<br>P0087 (Rmin), P0191 (Rnpl),<br>P0191 (Rsig), P0193, P0192                                                    |              |                   |
|                                         |               |                                                                                                                        |                                                                                                                                                                                                                         |                                              | Fault Codes that disable P0191,<br>P0087 & P0088 (sensor<br>rationality) | P0193, P0192                                                                                                                                                               |              |                   |

|                                              |               |                                                                                               | Fuel System I                                                                                                                                                                                                       | Monitoring         |                      |                    |              |               |
|----------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|--------------------|--------------|---------------|
| Component/System                             | Fault<br>Code | Malfunction Strategy Description                                                              | Malfunction Criteria                                                                                                                                                                                                | Threshold<br>Value | Secondary Parameters | Enable Conditions  | Time<br>Req. | MIL<br>illum. |
| High Fuel Pressure System<br>(cont)          |               |                                                                                               |                                                                                                                                                                                                                     |                    |                      |                    |              |               |
| High <i>MfPsOpenLoad</i>                     | P0251         | Check for Mass Flow Valve<br>Powerstage for Open Load.                                        | Monitors voltage during the idle state, DFC is raised if test voltage                                                                                                                                               | 1.4 v ~3.2 v       | Ignition switch -    | On                 | 0.3 ms       | 2 Drive       |
| fuel pump<br>(MFPSDIA) <i>MfPsOpenLoad</i> 2 | P0256         |                                                                                               | between threshold for three<br>successive tests                                                                                                                                                                     | 1.4 V ~3.2 V       | Battery Voltage -    | 6 v < vbatt < 18 v | 0.3 ms       | Cycles        |
| MfPsShCirBattLowSide                         | P0254         | Check for Mass Flow Valve                                                                     | Monitor checks voltage within the                                                                                                                                                                                   |                    |                      |                    |              |               |
| MfPsShCirBattLowSide2                        | P0259         | Powerstage for Short Circuit to<br>Battery on the Low Side of MSV.                            | HPFP Output stages with the<br>expected values during idle phase.<br>DFC is raised if test voltage is<br>exceeds threshold for three                                                                                | > 3.2 v            |                      |                    |              |               |
| MfPsShCirGndLowSide<br>MfPsShCirGndLowSide2  |               | Check for Mass Flow Valve<br>Powerstage for Short Circuit to<br>Ground on the Low Side of MSV | successive tests.<br>Monitor checks voltage within the<br>HPFP Output stages with the<br>expected values during off state.<br>DFC is raised if test voltage is less<br>than threshold for three<br>successive tests | < 1.4 v            |                      |                    |              |               |

| Component/System                                         | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria                                       | Threshold<br>Value      | Secondary Parameters                                            | Enable Conditions                                                          | Time<br>Req. | MIL<br>illum.     |
|----------------------------------------------------------|---------------|----------------------------------|------------------------------------------------------------|-------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------|--------------|-------------------|
| Fuel Supply Pressure<br>Sensor (low pressure)            |               |                                  |                                                            |                         |                                                                 |                                                                            |              |                   |
| Fuel system DSKVNRmax<br>pressure<br>(DDSKVND) DSKVNRmin |               | ·                                | Range check max<br>Range check max                         | > 1100 KPa<br>< 100 KPa | Ignition switch -<br>Battery voltage -                          | On<br>> 10.5 v                                                             | 1 s          | 2 Drive<br>Cycles |
|                                                          |               |                                  | for                                                        | 1 s                     | -                                                               |                                                                            |              | _                 |
| NDRmax                                                   | P008B         | Rationality - measured versus    | Difference below a threshold                               | < -180 KPa              | condition low pressure sensor raw                               |                                                                            | 60 s         |                   |
| NDRmin                                                   | P008A         | target                           | Difference above a threshold                               | > 150 KPa               | value valid                                                     |                                                                            |              |                   |
|                                                          |               |                                  | for                                                        | 60 s                    |                                                                 |                                                                            |              |                   |
| NDRnp.<br>NDRsig                                         | P0089         | Pump duty cycle check            | A fault is raised if the pump duty<br>cycle is below<br>or | < -12 %                 | The pump control<br>module and the fuel pump must be<br>active. |                                                                            | 5 s          | ]                 |
| (DDECOSPL)                                               |               |                                  | above<br>for<br>set time                                   | > 20 %<br>> 5 s         | The current operating state must<br>not be initial fueling.     |                                                                            |              |                   |
|                                                          |               |                                  |                                                            |                         | Fault Codes that disable P0089,<br>P008A (ndr) or P008B (ndr)   | P025D, P025C, P062A, P0627,<br>P2542, P2541, P008B (Rmax),<br>P008A (Rmin) |              |                   |
| Fuel Pressure System (low)                               |               |                                  |                                                            |                         |                                                                 |                                                                            |              |                   |
| low pressure sensor                                      |               | Out of range check               | FLPS Voltage (1175 kPa)                                    | > 4.85 v                | Ignition switch -                                               | On                                                                         | 0.6 s        | 2 Drive<br>Cycles |
| DSKVNDmax<br>DSKVNDmin                                   |               | Out of range check               | FLPS Voltage (25 kPa)                                      | < 0.15 v                | Battery voltage -                                               | > 10.5 v                                                                   |              | Cycles            |
| (GGDSND)                                                 |               |                                  | for                                                        | > 0.6 s                 |                                                                 |                                                                            |              |                   |

|                                               |               |                                  | Fuel System N                                                                                                                                                                                                                                                 | Nonitoring         |                                        |                           |              |               |
|-----------------------------------------------|---------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------|---------------------------|--------------|---------------|
| Component/System                              | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria                                                                                                                                                                                                                                          | Threshold<br>Value | Secondary Parameters                   | Enable Conditions         | Time<br>Req. | MIL<br>illum. |
| Fuel Pressure Sensor<br>(high)                |               |                                  |                                                                                                                                                                                                                                                               |                    |                                        |                           |              |               |
| FRPS high input DSKVmax                       | P0193         | Out of range check               | FRPS Voltage (26.0 MPa)                                                                                                                                                                                                                                       | > 4.80 v           | Ignition switch -                      | On                        | 0.6 s        | 2 Drive       |
| FRPS low input DSKVmin                        | P0192         | Out of range check               | FRPS Voltage (0.0 MPa)                                                                                                                                                                                                                                        | < 0.2 v            | Battery voltage -                      | > 10.5 v                  |              | Cycles        |
| (GGDSKV)                                      |               |                                  | For                                                                                                                                                                                                                                                           | > 0.6s             |                                        |                           |              |               |
| DSKVSSig                                      | P0191         | Signal Stuck Check               | Monitors the voltage over a number                                                                                                                                                                                                                            | < 0.049 V          | Engine speed -                         | 120 rpm < nmot < 4520 rpm | 2 s          |               |
|                                               |               |                                  | of injection cycles. If the voltage deviation does not exceed a                                                                                                                                                                                               | For 2 s            | Unfiltered rail pressure -             | > 3 MPa                   |              |               |
|                                               |               |                                  | threshold then a stuck sensor is                                                                                                                                                                                                                              |                    | injected fuel mass                     | > 5 %                     |              |               |
|                                               |               |                                  | declared.                                                                                                                                                                                                                                                     |                    | mean voltage rail pressure             | < 4.5 v                   |              |               |
| Fuel Rail Temperature                         |               |                                  |                                                                                                                                                                                                                                                               |                    |                                        |                           |              |               |
| TFUEL high input TFUELEmax                    | P0183         | Out of range check               | TFUEL Voltage (0 °C )                                                                                                                                                                                                                                         | > 4.92 v           | Ignition switch -                      | On                        | 0.6 s        |               |
| TFUEL low input TFUELEmin                     | P0182         | Out of range check               | TFUEL Voltage (143 °C)                                                                                                                                                                                                                                        | < 0.15 v           | Battery voltage -                      | > 10.5 v                  |              |               |
| (GGTFUEL)                                     |               |                                  | for                                                                                                                                                                                                                                                           | > 2 s              |                                        |                           |              |               |
| TFUELRmax                                     | P0181         | Out of range check               | TFUEL Temp                                                                                                                                                                                                                                                    | > 143.25 °C        |                                        |                           |              |               |
| TFUELRmin                                     | P0181         | Out of range check               | TFUEL Temp                                                                                                                                                                                                                                                    | < -48 °C           |                                        |                           |              |               |
|                                               |               |                                  | for                                                                                                                                                                                                                                                           | 10 s               |                                        |                           |              |               |
| TFUELRnpl                                     | P0181         | Actual fuel rail temperature     | If the temperature difference is                                                                                                                                                                                                                              | > +/- 50 °C        |                                        |                           | 10 s         |               |
| TFUELRsig                                     | P0168         | is continuously compared         | below or above threshold npl or sig                                                                                                                                                                                                                           |                    |                                        |                           |              |               |
| (DPLTFUEL)                                    |               | against modeled temperature      | faults are set                                                                                                                                                                                                                                                |                    |                                        |                           |              |               |
|                                               |               |                                  | for                                                                                                                                                                                                                                                           | > 10 s             |                                        |                           |              |               |
| Fuel Level Sender                             |               |                                  |                                                                                                                                                                                                                                                               |                    |                                        |                           |              |               |
| (DFSTTDFP) FSTESsig                           | P2065         | CAN Signal check                 | Checks for quality factor for CAN                                                                                                                                                                                                                             |                    | Ignition Switch -                      |                           | 0.1 s        | No            |
| FSTEsig                                       | P0460         |                                  | fuel level signal                                                                                                                                                                                                                                             |                    | Battery voltage -                      | > 10.5 v                  |              |               |
| Low Fuel Level<br><i>TANKLnpl</i><br>(DTANKL) | P131A         | Fuel Level check                 | If the fuel level is below 2 liters then<br>this flag is set if there is a fault for<br>fuel rail pressure control or idle<br>speed control or high-pressure start<br>or uhego / hego sensor or fuelling<br>adaptions or misfire or boost<br>pressure control |                    | Ignition Switch -<br>Battery voltage - | On<br>> 10.5 v            | 0.2 s        |               |

|                                        |               |                                                                                                                                                                                                                                                   | Fuel System N                                                                                                                                                                    | Aonitoring         |                      |                   |              |               |
|----------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|--------------|---------------|
| Component/System                       | Fault<br>Code | Malfunction Strategy Description                                                                                                                                                                                                                  | Malfunction Criteria                                                                                                                                                             | Threshold<br>Value | Secondary Parameters | Enable Conditions | Time<br>Req. | MIL<br>illum. |
| Fuel Level Sender<br>Rationality Check |               |                                                                                                                                                                                                                                                   |                                                                                                                                                                                  |                    |                      |                   |              |               |
| FSTRmax                                | P0461         | A modeled value of fuel tank level is<br>compared to the measured value<br>and the difference between the two<br>is integrated.<br>If the integrated difference exceeds<br>14 litres, then a fault is suspected<br>with one of the sensor signals | Fuel level signal 1 stuck<br>Level change during time to<br>consume 5 I, when the integrated<br>difference between the modeled<br>and measured fuel levels has<br>exceeded 14 I. | < 0.1 l            | Vehicle speed        | >= 6.2 mph        | 10 s         | No            |
| FSTRSmax<br>(DFSTTDFP)                 |               | If one of the level signals then<br>changes by less than 0.1 litres<br>during the time it takes the<br>integrated difference to change by<br>an additional 5.0 litres, then a fault is<br>detected.                                               | Fuel level signal 2 stuck<br>Level change during time to<br>consume 5 I, when the integrated<br>difference between the modeled<br>and measured fuel levels has<br>exceeded 14 I. | < 0.1 l            |                      |                   |              |               |

# 7.4. Fuel Injector Monitoring Tables

|          |                    |               |                                                                         | Fuel Injector M                                                      | Monitoring         |                             |                   |              |                   |
|----------|--------------------|---------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------|-----------------------------|-------------------|--------------|-------------------|
| Coi      | mponent/System     | Fault<br>Code | Malfunction Strategy Description                                        | Malfunction Criteria                                                 | Threshold<br>Value | Secondary Parameters        | Enable Conditions | Time<br>Req. | MIL<br>illum.     |
| Fuel Inj | ectors             |               |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 1    | HDEVH_MAX / MIN_0  |               | Short circuit to battery (max error)<br>or Short circuit to ground (min | Monitor checks voltages of control<br>signals within the powerstage  |                    | Engine started and running. |                   | 0.5 s        | 2 Drive<br>Cycles |
| inj 5    | HDEVH_MAX / MIN _1 | P0274         | error) of the HDEV power stage                                          | controlling the fuel injector and                                    |                    | Battery voltage -           | > 10.5 v          |              | Cycles            |
| inj 4    | HDEVH_MAX / MIN _2 | -             | high-side                                                               | compares these with the expected                                     |                    |                             |                   |              |                   |
| inj 2    | HDEVH_MAX/MIN_3    |               |                                                                         | voltage levels during the injection                                  |                    |                             |                   |              |                   |
| inj 6    | HDEVH_MAX / MIN_4  |               |                                                                         | cycle.                                                               |                    |                             |                   |              |                   |
| inj 3    | HDEVH_MAX / MIN _5 |               |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 7    | HDEVH_MAX / MIN _6 | P0280         |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 8    | HDEVH_MAX / MIN_7  | P0283         |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 1    | HDEVL_MAX / MIN_0  | P0261         | Short circuit to battery (max error)                                    | Tests for short circuit to battery or                                |                    |                             |                   |              |                   |
| inj 5    | HDEVL_MAX / MIN_1  | P0273         | or Short circuit to ground (min                                         | short circuit to ground of the Low                                   |                    |                             |                   |              |                   |
| inj 4    | HDEVL_MAX / MIN _2 | P0270         | error) of the HDEV power stage<br>low-side                              | Side Drive circuit of fuel injector                                  |                    |                             |                   |              |                   |
| inj 2    | HDEVL_MAX / MIN_3  | P0264         | iow-side                                                                |                                                                      |                    |                             |                   |              |                   |
| inj 6    | HDEVL_MAX / MIN_4  | P0276         |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 3    | HDEVL_MAX / MIN_5  | P0267         |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 7    | HDEVL_MAX / MIN_6  | P0279         |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 8    | HDEVL_MAX / MIN_7  | P0282         |                                                                         |                                                                      |                    |                             |                   |              |                   |
| inj 1    | HDEVL_NPL_0        |               | Booster time-out of the HDEV                                            | Monitor checks voltages of control                                   |                    |                             |                   |              |                   |
| inj 5    | HDEVL NPL 1        |               | power stage (low-side non plausible                                     | signals within the powerstage                                        |                    |                             |                   |              |                   |
| inj 4    | HDEVL_NPL_2        | P02F1         | error)                                                                  | controlling the fuel injector and                                    |                    |                             |                   |              |                   |
| inj 2    | HDEVL_NPL_3        |               |                                                                         | compares these with the expected voltage levels during the injection |                    |                             |                   |              |                   |
| inj 6    | HDEVL_NPL_4        | P02F3         |                                                                         | process                                                              |                    |                             |                   |              |                   |
| inj 3    | HDEVL_NPL_5        | P02F0         |                                                                         | Booster time fault, the DC/DC                                        |                    |                             |                   |              |                   |
| inj 7    | HDEVL_NPL_6        |               |                                                                         | converter did not build up the                                       |                    |                             |                   |              |                   |
| inj 8    | HDEVL_NPL_7        |               |                                                                         | required voltage in                                                  |                    |                             |                   |              |                   |
| inj 1    | HDEVH_NPL_0        |               | Short circuit between high-side and                                     | Monitor checks voltages of control                                   | 1                  |                             |                   |              |                   |
| inj 5    | HDEVH_NPL_1        | -             | low-side of the HDEV power stage                                        | signals within the powerstage                                        |                    |                             |                   |              |                   |
| inj 4    | HDEVH NPL 2        |               | (high-side non plausible error)                                         | controlling the fuel injector and                                    |                    |                             |                   |              |                   |
| inj 2    | HDEVH NPL 3        | -             |                                                                         | compares these with the expected voltage levels during the injection |                    |                             |                   |              |                   |
| inj 6    | HDEVH_NPL_4        | -             |                                                                         | process                                                              |                    |                             |                   |              |                   |
| inj 3    | HDEVH_NPL_5        |               |                                                                         | Booster time fault, the DC/DC                                        |                    |                             |                   |              |                   |
| inj 7    | HDEVH_NPL_6        |               |                                                                         | converter did not build up the                                       |                    |                             |                   |              |                   |
| inj 8    | HDEVH_NPL_7        |               |                                                                         | required voltage in                                                  |                    |                             |                   |              |                   |
|          |                    |               | I                                                                       |                                                                      | 1                  |                             |                   | 1            | 1                 |

|                    |                            |               |                                                               | Fuel Injector Mo                                                                                                                              | onitoring          |                             |                   |              |               |
|--------------------|----------------------------|---------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------|-------------------|--------------|---------------|
| Componer           | t/System                   | Fault<br>Code | Malfunction Strategy<br>Description                           | Malfunction Criteria                                                                                                                          | Threshold<br>Value | Secondary Parameters        | Enable Conditions | Time<br>Req. | MIL<br>illum. |
| Fuel Injectors (co | ont)                       |               |                                                               |                                                                                                                                               |                    |                             |                   |              |               |
| inj 1              | HDEVL_SIG_0                | P0201         | Checks whether the Low Side                                   | Monitor checks voltages of control                                                                                                            |                    | Engine started and running. |                   | 0.5 s        | 2 Drive       |
| inj 5              | HDEVL_SIG_1                | P0205         | drive is connected to the fuel                                | signals within the powerstage<br>controlling the fuel injector and<br>compares these with the expected<br>voltage levels during the injection |                    | Battery voltage -           | > 10.5 v          |              | Cycles        |
| inj 4              | HDEVL_SIG_2                | P0204         | injector                                                      |                                                                                                                                               |                    |                             |                   |              |               |
| inj 2              | HDEVL_SIG_3                | P0202         |                                                               |                                                                                                                                               |                    |                             |                   |              |               |
| inj 6              | HDEVL_SIG_4                | P0206         |                                                               | process                                                                                                                                       |                    |                             |                   |              |               |
| inj 3              | HDEVL_SIG_5                | P0203         |                                                               |                                                                                                                                               |                    |                             |                   |              |               |
| inj 7              | HDEVL_SIG_6                | P0207         |                                                               |                                                                                                                                               |                    |                             |                   |              |               |
| inj 8              | HDEVL_ <b>SIG_7</b>        | P0208         |                                                               |                                                                                                                                               |                    |                             |                   |              |               |
| Powerstage SPI     | HDEVK_min_0                | P2146         | High Pressure Injection Valve                                 | Fault is set if SPI communication                                                                                                             |                    | Ignition switch -           | On                | 0.5 s        |               |
| Check              | HDEVK_min_1                | P2149         | Communication check                                           | min error reported                                                                                                                            |                    |                             |                   |              |               |
|                    | HDEVK_npl_0                |               | High Pressure Injection Valve                                 | Fault is set if SPI communication                                                                                                             |                    |                             |                   |              |               |
|                    | HDEVK_npl_1                | P2150         | Communication check                                           | plausibility error reported                                                                                                                   |                    |                             |                   |              |               |
| (INJVLVPS_DIA      | HDEVK_sig_0<br>HDEVK_sig_1 |               | High Pressure Injection Valve<br>Communication Signal Failure | No signal detected                                                                                                                            |                    |                             |                   |              |               |

### 8. UHEGO Sensor Monitoring

### 8.1. Fault Codes

P064D - Internal Control Module O2 Sensor Processor Performance - Bank 1

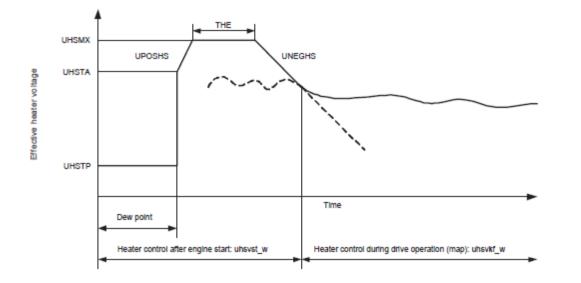
- P064E Internal Control Module O2 Sensor Processor Performance Bank 2
- P00D1 HO2S Heater Control Circuit Range/Performance (Bank 1, Sensor 1)
- P00D3 HO2S Heater Control Circuit Range/Performance (Bank 2, Sensor 1)
- P0135 O2 Sensor Heater Circuit (Bank 1, Sensor 1)
- P0155 O2 Sensor Heater Circuit (Bank 2 Sensor 1)
- P2231 O2 Sensor Signal Circuit Shorted to Heater Circuit (Bank 1, Sensor 1)
- P2234 O2 Sensor Signal Circuit Shorted to Heater Circuit (Bank 2, Sensor 1)
- P0131 O2 Sensor Circuit Low Voltage (Bank 1, Sensor 1)
- P0151 O2 Sensor Circuit Low Voltage (Bank 2 Sensor 1)
- P0132 O2 Sensor Circuit High Voltage (Bank 1, Sensor 1)
- P0152 O2 Sensor Circuit High Voltage (Bank 2 Sensor 1)
- P2626 O2 Sensor Positive Current Trim Circuit Open (Bank 1, Sensor 1)
- P2626 O2 Sensor Positive Current Trim Circuit Open (Bank 2, Sensor 1)
- P2237 O2 Sensor Positive Current Control Circuit Open (Bank 1, Sensor 1)
- P2240 O2 Sensor Positive Current Control Circuit Open (Bank 1, Sensor 1)
- P2243 O2 Sensor Reference Voltage Circuit Open (Bank 1, Sensor 1)
- P2247 O2 Sensor Reference Voltage Circuit Open (Bank 2, Sensor 1)
- P2251 O2 Sensor Negative Current Control Circuit Open (Bank 1, Sensor 1)
- P2254 O2 Sensor Negative Current Control Circuit Open (Bank 2, Sensor 1)
- P0134 O2 Sensor Circuit No Activity Detected (Bank 1, Sensor 1)
- P0154 O2 Sensor Circuit No Activity Detected (Bank 2, Sensor 1)
- P0133 O2 Sensor Circuit Slow Response (Bank 1, Sensor 1)
- P0153 O2 Sensor Circuit Slow Response (Bank 2 Sensor 1)

# 8.2. System Overview

The diagnosis of the Upstream UHEGO sensor consists of the analysis of all the components that are required to produce a valid fueling signal. It is split into two groups, heater and sensor signal diagnosis, these being split further into circuit and performance diagnosis. Circuit tests are continuously performed whereas performance checks run once per drive cycle.

### 8.3. 'UHEGO Sensor Ready' Conditions

UHEGO sensor ready conditions are set once the Nernst cell resistance check confirms that the sensor temperature is above 685 degC. This check is made in combination with the UHEGO sensor heater control and diagnostics. Any failure in the heater control or sensor diagnostics will set the UHEGO ready flag to 'not ready' and the failure faults declared.


#### 8.4. Sensor Heater Control

The main task of the heater control is to bring the oxygen sensor to its optimum operation temperature as soon as possible and to operate it at a constant ceramic temperature independently from ambient conditions allowing exact lambda control. The heater control utilizes a fixed 10 ms PWM voltage signal which is applied in controlled 'bursts' yielding an 'effective heater voltage' and heater power.

Post start, condensation water can accumulate in a cold exhaust gas system. If this water was to hit the hot sensor ceramic, it could damage the sensor. In order to avoid this, the sensor is operated with reduced heater power during 'dew point' conditions. As soon as dew point end is reached and engine temperature is high enough, the effective heater voltage is stepped up. The step height depends on the exhaust gas temperature at the sensor position. At lower temperatures the step height is reduced to prevent high thermal stress. Subsequently the heater voltage is raised in the form of a ramp until it reaches its maximum value. This maximum value is maintained for a period dependent upon start temperature after which heater voltage is controlled dependent upon the measured sensor temperature and exhaust mass flow.

#### 8.4.1. Valid sensor resistance has been measured

During the heater control process the ceramics resistance is being measured and if the 'Valid sensor resistance has been measured' flag is set, then a temperature conversion is made. This temperature can then be used for the 'UHEGO Sensor Ready' declaration. A valid resistance is one in which no faults in the sensor have been determined and no trimming control of the sensor is being performed. Trimming control is a process where an internal ECU reference resistance is used to compensate the Nernst cell resistance for any ageing effects.



### 8.4.2. Dew point assessment

Condensate is the result of the high water content of the exhaust gas condensing on the cold surfaces on or in the exhaust system. The amount of condensate is influenced by the temperature differential of the cold surfaces of the exhaust system and the exhaust gas. Surface temperatures are influenced by start temperature, ambient temperature, engine shut down time, stop temperatures and engine operational conditions prior to stopping. Exhaust temperature conditions are mainly affected by start and operational conditions. A model is formed introducing these factors and predicts when the temperature rise of the exhaust pipe surfaces close to the sensor position are sufficiently high enough that 'Dew point conditions' are passed. The need for fast introduction of sensor readiness and fuel control coupled with the protection of the sensor for warranty costs means that a highly accurate working model is required.

#### 8.5. Heater Diagnostics

#### 8.5.1. Heater Powerstage/control circuit analysis

**P064D and P064E**. Fault recognition, read-out and storage of the power stage fault information is done within the Powerstage hardware. Fault verification and OBD-fault storage is done within the EMS software. This is performed by observing the fault status information placed in an error-trace-buffer. If a fault has been signaled a counter is activated which has been set with a non-calibrateable time (300 ms). After this time has elapsed, a verification test pulse is initiated in order to confirm the fault. One calculation raster later (100 ms) the verification check is performed. If, during the verification check, the same fault is recognized, the fault is considered to be verified. Faults which cannot be definitely detected are neglected.

#### 8.5.2. Heater Control Diagnosis

**P0135, P0155, P00D1 and P00D3.** The diagnosis of closed-loop heating control monitors the calibration resistor and the duty cycle for heating control of the oxygen sensor. Three error states can exist, signal error, signal plausibility (P00D1) and signal max (P0135). *Signal error* compares the measurement of the resistance compensation with a threshold. The signal compensation is determined by measuring the internal calibration resistance and comparing that with its known value and applying an offset. If the difference exceeds a threshold for a set period of time then the Nernst resistance measurement can no longer be considered reliable and a fault is declared. *Signal plausibility* is defined as the desired temperature of the ceramic not being reached during control operation. If the heater control PWM signal is still controlling high i.e. applying heating current to the heater, and the temperature does not reach a desired usable threshold within a time period then a *max fault* is set.

#### 8.5.3. Heater Influence on Nernst Cell

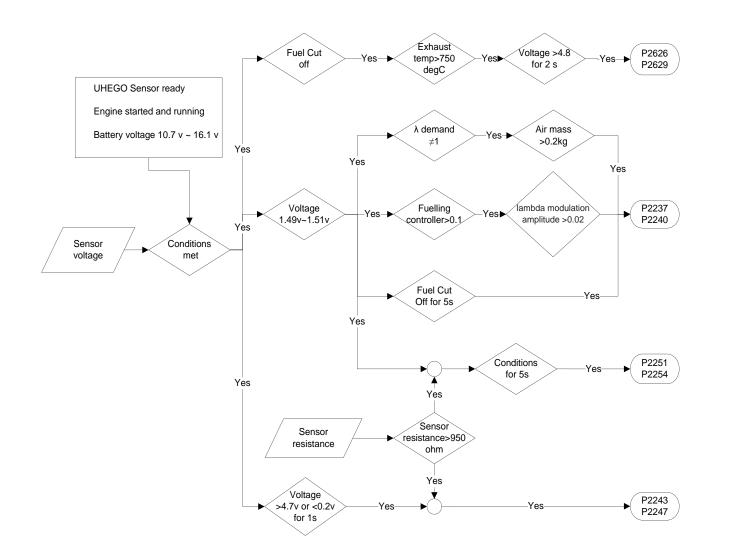
**P2231 and P2234.** When the heater is switched on or off it can cause periodic disturbances in the O2 signal. If these disturbances become too large, the signal can no longer be used and an error is set.

#### 8.6. Signal Diagnostics

### 8.6.1. Integrated Circuit (IC) Electrical monitoring

The IC diagnosis for the UHEGO detects electrical errors on the signal lines UN (Nernst voltage), VM (virtual ground), IA (compensation line) and IP (pump line). These electric errors can be caused by short circuits to battery voltage, to ground or by line interruptions.

**P0131, P0151, P0132 and P0152.** Short to ground and Short to battery. Short circuits are detected by self-diagnosis based on voltage comparators integrated in every connection pin.

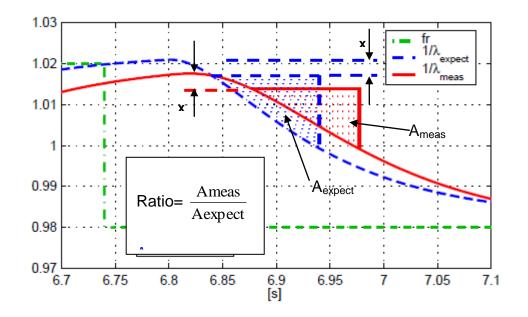

**P2626 and P2629.** Open circuit detected on IA (calibrating line). The combination of the trimming resistor in the sensor connector and the calibration resistor in the ECU assures that the pump current op amp will produce the correct sensor characteristic. If a line break is present in the calibration line and pump current is present then the amplifier voltage output will be high. To ensure that there is pump current present then lambda conditions cannot be stoichiometric. For diagnosis consistency overrun/fuel cut off conditions are required (i.e. lean fuelling). As a further secondary condition, the exhaust gas temperature must be within a preset range.

**P2237 and P2240.** Open circuit detected at IP line (pump current line). If the pump current line is broken then the amplifier will see a zero pump current condition and its output will be 1.5 V. If this condition exists for 3 seconds then three methods are used to diagnose such a condition.

- If non-stoichiometric fuelling is demanded and the amplifier output still indicates a stoichiometric 1.5 V output then an air mass integration is executed. If this integrated air mass exceeds a limit then a fault is diagnosed. This air mass count will be reset if the output voltage deviates outside 1.5 V. The air mass count will suspend if a stoichiometric fuelling demand is requested for less than a period, demands for greater then that period result in an air mass count reset.
- If the observed output indicates a stoichiometric fuelling (1.5 V) and stoichiometric fuelling is demanded then the response to an active fuelling change is made. This can either be through normal operation when the fuelling controller is observed to exceed a threshold or through the request of a forced fuelling step. If during this fuelling change the voltage output is still 1.5 V then a fault is diagnosed.
- If, during an overrun fuel cut event the voltage has not moved away from 1.5 V after a period of time a fault is diagnosed.

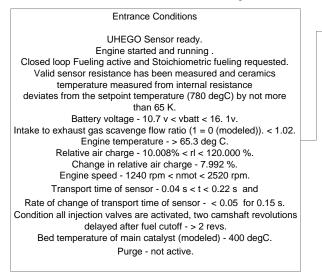
**P2243 and 2254.** Line interruption of sensor line UN (Nernst Cell Voltage). If the UN line is broken then the sensor resistance will become implausibly high. This will invoke a reaction from the heater control to increase its heat output. This will have negligible effect upon the sensor resistance and after the heating cycle, the sensor voltage will converge to 0 or 5 V. If these conditions are met then a line interruption of the UN line fault is diagnosed.

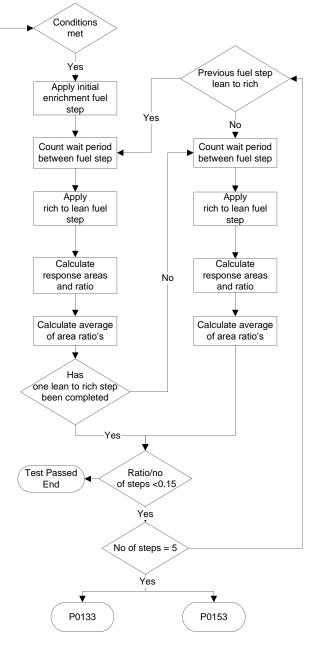
**P2251 and P2251.** Line interruption of sensor line VM (Virtual Ground). If the VM line is broken the sensor resistance will also become implausibly high. Again this will invoke a reaction from the heater and it will begin its heating cycle. Following this the signal voltage will be set at 1.5 V, as the pump current cannot discharge down the VM line. If these conditions are met then a line interruption of the VM line fault is diagnosed.




# 8.6.2. UHEGO Signal Diagnostics – System Flowchart

## 8.6.3. Sensor Dynamics


**P0134 and P0154.** Voltage diagnosis. Checks the output voltage of the UHEGO controller for plausibility. In general the output voltages are considerably lower at a value for lambda that is near to 1 than the 'in air' voltage. Such a fault can occur if the lambda sensor – although electrically connected - is not fitted or not fitted properly in the exhaust-system branch. The diagnostic compares the sensor voltage to 'in air' voltage threshold.


**P0133 and P0153**. Sensor response rate. Slow lambda sensors may lead to increased exhaust emissions or corrupt OBD monitors which make use of the lambda sensor signal. OBD legislation requires that a fault code be set if the slowing of the lambda sensor increases exhaust emissions beyond the OBD limits or deteriorates the performance of OBD monitors. The function uses intrusive step-changes of the injected fuel quantity (fr). When such an event occurs, the measured lambda signal is compared to the expected signal. Starting with the reaction to the fuel step, the area between the inverted lambda signal and a horizontal line through a start value is determined for both the expected ( $1/\lambda_{expect}$ ) and the measured signal ( $1/\lambda_{meas}$ ), and the quotient between measured and expected area is computed. This start value is defined as a quantity of signal change following the detection of the change in signal (x) and the period is the same calibrated time. The slower the lambda sensor is, the smaller the area and thus the smaller that the quotient will be.



The actual analysis occurs over a number of fuel steps to increase accuracy and robustness. The number of fuel steps depends upon the results of the ratio check. If the ratio is large and above a threshold then the sensor is acting normally and the test sequence ended. If the ratio is below the threshold then another fuel step is requested and a ratio decision made. This continues until a maximum number of steps are reached. If the diagnostic calls for more fuel steps the actual decision is made on the average of these ratios divided by the number of steps. A sensor can exhibit a reduction in transient time which consists of a reduction of the of the lambda sensor signal gradient with respect to the gradient of the real lambda value, as well as an increase response-time faults, which consist in a retarded reaction of the lambda sensor signal to lambda changes. These faults can occur during rich to lean *or* lean to rich fueling changes (asymmetric) or symmetrically independent of the direction of the fuel change. All six fault patterns can be detected using quotient area calculation. Before the analysis begins a certain number of entrance conditions need to be satisfied to ensure that a reliable result is obtained. This is a non-continuous diagnostic that will attempt to run during a drive cycle whenever the entry conditions are met until a decision has been made. The monitor will not then operate again until the next drive cycle. The process is shown in the following flowchart.

#### 8.6.4. UHEGO Sensor Dynamics – System Flowchart





# 8.7. UHEGO Sensor Monitoring Tables

|                                                 |               |                                                            | Oxygen Sensor Mon                                                                                                                                 | itoring Up         | stream               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                |
|-------------------------------------------------|---------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|
| Component/System                                | Fault<br>Code | Malfunction Strategy Description                           | Malfunction Criteria                                                                                                                              | Threshold<br>Value | Secondary Parameters | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time<br>Req.                                                                | MIL<br>illum.                                                  |
| Oxygen Sensors Upstream<br>(UHEGO)              |               |                                                            |                                                                                                                                                   |                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                             |                                                                |
| slow response DYLSUmin<br>DYLSU2min<br>(DDYLSU) | P0153         | Measures response of sensor too<br>induced fuelling shifts | Integrated response rate of<br>expected signal compared with<br>Integrated response rate of<br>measured signal over a maximum<br>number of steps. | < 0.2<br>5 steps   |                      | See 'catalyst Monitoring'<br>Condition: RI Validi flag<br>10.7 v < vbatt < 16. 1 v<br>> 45.75 °C<br>24 % < rl < 65 %<br>4.80 %.in 0.5 s<br>1240 rpm < nmot < 3720 rpm<br>0.04 s < zlrs_w < 0.18 s<br>< 0.04 s for 0.15 s<br>> 2 revs<br>> 400 °C<br>not active<br>> 3g<br>P0040, P000D, P0024, P2095, P209<br>P2090, P0013, P000B, P0014, P000<br>P2092, P0020, P2089, P2088, P001<br>P0032, P0031, P0030, P0135, P00D<br>(max), P2237 (npl), P2237 (sig), P07<br>(max), P2459, P0458, P044<br>P0155, P00D3, P00D3, P0052, P00 | DC, P0021<br>10, P000A<br>D1, P00D1<br>064D (sig)<br>132, P013<br>06, P0170 | , P2093,<br>, P0011,<br>l, P064D<br>), P2237<br>1,<br>, P0134, |
|                                                 |               |                                                            |                                                                                                                                                   |                    |                      | (max), P064E (min), P064E (npl), P0<br>(max), P2240 (npl), P2240 (sig), P0<br>P2247, P2254, P0150, P0040, P219<br>P0154, P000D, P0024, P2095, P209<br>P2090, P0013, P000B, P0014, P000                                                                                                                                                                                                                                                                                                                                         | 152, P015<br>97, P2198<br>94, P0023<br>9C, P0021                            | 1,<br>, P0173,<br>, P2091,<br>, P2093,                         |
|                                                 |               |                                                            |                                                                                                                                                   |                    |                      | P2092, P0020, P2089, P2088, P001<br>P0496, P0497, P0459, P0458, P044                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                             | , P0011,                                                       |

|                           |                   |               |                                                             | Oxygen Sensor Mor                                                                                                                                                                      | nitoring Up                         | stream                                                                                                                                                |                                                                                                                                                                         |              |                 |
|---------------------------|-------------------|---------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| Component/                | System            | Fault<br>Code | Malfunction Strategy Description                            | Malfunction Criteria                                                                                                                                                                   | Threshold<br>Value                  | Secondary Parameters                                                                                                                                  | Enable Conditions                                                                                                                                                       | Time<br>Req. | MIL             |
| Oxygen Sensors<br>(UHEGO) | Upstream          |               |                                                             |                                                                                                                                                                                        |                                     |                                                                                                                                                       |                                                                                                                                                                         |              |                 |
| Diagnosis of<br>Heater    | HSVsig<br>HSV2sig | P00D3         | resistor in the ECU for plausibility:<br>Condition: RI flag | If the difference between the<br>Nernst resistance and the<br>calibration resistance is above a<br>threshold for a fixed period a fault<br>is declared (Condition: RI Invalid<br>flag) | > 45 ohm<br>for<br>> 2 s            | Battery voltage -<br>Engine Speed -<br>Condition heater switched on.                                                                                  | 10.7 v < vbatt < 16. 1 v<br>Cranking or Engine started and<br>running.                                                                                                  | 2 s          | 2 Driv<br>Cycle |
|                           | HSVnpl<br>HSV2npl |               | Sensor temperature plausibility – at<br>start               | reached an acceptable<br>temperature in fixed period a fault                                                                                                                           |                                     | Battery voltage -<br>Engine Speed -                                                                                                                   | 10.7 v < vbatt < 16. 1 v<br>Cranking or Engine started and<br>running.                                                                                                  | 70 s         |                 |
| (DHRLSU                   | (DHRLSU)          |               |                                                             | is declared                                                                                                                                                                            | < 725 °C<br>After<br>30 s           | Engine temperature at start -<br>Condition heater switched on.<br>Valid sensor resistance has been<br>measured.<br>Condition all injection valves are | > -9.75 °C<br>Condition: RI Valid flag                                                                                                                                  |              |                 |
|                           |                   | P0135         | Sensor temperature plausibility<br>demand – Normal running  | If the temperature of ceramics of LSU is below a threshold and the                                                                                                                     |                                     | activated, two camshaft revolutions<br>delayed after fuel cutoff -<br>Battery voltage -                                                               | > 2 revs<br>10.7 v < vbatt < 16. 1 v                                                                                                                                    | 60 s         | -               |
|                           |                   | P0155         | demand – Normai furining                                    | PWM demand to the heater circuit<br>is above a threshold for an<br>unacceptable period of time a fault<br>is diagnosed.                                                                | < 725 °C<br>> 90 %<br>For<br>> 60 s | Engine Speed -<br>Sensor temperature plausibility – at<br>start<br>Valid sensor resistance has been<br>measured.                                      | Engine started and running.<br>Completed<br>Condition: RI Valid flag                                                                                                    |              |                 |
|                           |                   |               |                                                             |                                                                                                                                                                                        |                                     | Not in fuel cut for<br>And modeled exhaust temperature<br>(tavso) -                                                                                   | 50 s<br>> 350 °C                                                                                                                                                        |              |                 |
|                           |                   |               |                                                             |                                                                                                                                                                                        |                                     | Fault codes that disable P0135<br>and P00D1 (npl)                                                                                                     | P2626, P0032, P0031, P0030,<br>P2237 (max), P2237 (npl), P2237<br>(sig), P0132, P0131, P2243,<br>P2251, P064D (max), P064D<br>(min), P064D (npl), P064D (sig),<br>P0300 |              |                 |
|                           |                   |               |                                                             |                                                                                                                                                                                        |                                     | Fault codes that disable P0155<br>and P00D3 (npl)                                                                                                     | P2629, P0052, P0051, P0050,<br>P2240 (max), P2240 (npl), P2240<br>(sig), P0152, P0151, P2247,<br>P2254, P064E (max), P064E (min),<br>P064E (npl), P064E (sig), P0300    |              |                 |

|                                                                     |               |                                                                                                   | Oxygen Sensor Mon                | itoring Up         | stream                                                                                                   |                                                                         |              |               |
|---------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------|----------------------------------|--------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------|---------------|
| Component/System                                                    | Fault<br>Code | Malfunction Strategy Description                                                                  | Malfunction Criteria             | Threshold<br>Value | Secondary Parameters                                                                                     | Enable Conditions                                                       | Time<br>Req. | MIL<br>illum. |
| Oxygen Sensors Upstream<br>(UHEGO)                                  |               |                                                                                                   |                                  |                    |                                                                                                          |                                                                         |              |               |
| Heater control circuit HSVEmax                                      | P0032         | Short to battery                                                                                  | Duty cycle for sensor heater     | > 4 %              | Battery voltage -                                                                                        | 10.7 v < vbatt < 16. 1 v                                                | 10 s         | 2 Drive       |
| HSVE2max                                                            | P0052         | Short to battery                                                                                  | Duty cycle for sensor heater     | > 4 %              | Engine Speed -                                                                                           | Cranking or Engine started and<br>running.                              |              | Cycles        |
| HSVEmin                                                             | P0031         | Short to ground                                                                                   | Duty cycle for sensor heater     | < 97 %             |                                                                                                          | ° °                                                                     |              |               |
| HSVE2min                                                            | P0051         | Short to ground                                                                                   | Duty cycle for sensor heater     | < 97 %             |                                                                                                          |                                                                         |              |               |
| HSVEsig                                                             | P0030         | Open circuit                                                                                      | No Duty cycle                    |                    |                                                                                                          |                                                                         |              |               |
| (DHRLSUE) HSV2Esig                                                  | P0050         | Open circuit                                                                                      | No Duty cycle                    |                    |                                                                                                          |                                                                         |              |               |
| Diagnosis of HELSUsig<br>influence of HELSU2sig<br>heater on nernst | P2234         | UHEGO current oscillation<br>implausible – heater switching can<br>influence the sensor signal by | Rate of change of sensor current | > 190 µA           | UHEGO Sensor ready -<br>Engine Speed -                                                                   | See 'catalyst Monitoring'<br>Cranking or Engine started and<br>running. | 15 s         |               |
| cell (DHELSU)                                                       |               | increasing the rate of change of                                                                  |                                  |                    | Battery voltage -                                                                                        | 10.7 v < vbatt < 16. 1 v                                                |              |               |
|                                                                     |               | sensor current. If the disturbance is                                                             |                                  |                    | Relative load -                                                                                          | > 30 %.                                                                 |              |               |
|                                                                     |               | to big then a fault is declared.                                                                  |                                  |                    | Engine speed -                                                                                           | < 3000 rpm                                                              |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Exhaust gas temperature in front of pre-catalyst out of model (tavvkm) -                                 | < 800 °C                                                                |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Duty cycle for lambda sensor<br>heater -                                                                 | 20 % < tahrlsu < 80 %                                                   |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Closed loop Fueling active and Stoichiometric fueling requested -                                        | = 1                                                                     |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Lambda actual value between -                                                                            | 0.95 < λ < 1.05                                                         |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Condition all injection valves are<br>activated, two camshaft revolutions<br>delayed after fuel cutoff - | > 2 revs                                                                |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Fault codes that disable P2231                                                                           | P064D (max), P064D (min), P064D<br>(npl), P064D (sig), P0300            |              |               |
|                                                                     |               |                                                                                                   |                                  |                    | Fault codes that disable P2234                                                                           | P064E (max), P064E (min), P064E (npl), P064E (sig), P0300               |              |               |

| Component/System                                  | Fault<br>Code | Malfunction Strategy Description                                                     | Malfunction Criteria                                                                                                                                                                   | Threshold<br>Value                       | Secondary Parameters                                                                                                                                                                                                  | Enable Conditions                                                                                                                                                                                 | Time<br>Req. | MIL<br>illum.   |
|---------------------------------------------------|---------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| Oxygen Sensors Upstream<br>(UHEGO)                |               |                                                                                      |                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                       |                                                                                                                                                                                                   |              |                 |
| Voltage diagnosis ULSUn<br>UHEGO ULSU2n<br>(DULSI | o/ P0154      | UHEGO controller for plausibility                                                    | If the controller voltage is outside a<br>defined range then a plausibility<br>fault raised                                                                                            | Acceptable<br>range<br>2.71 v ~4.81<br>v | UHEGO Sensor ready -<br>Engine Speed -<br>Condition all injection valves are<br>activated, two camshaft revolutions<br>delayed after fuel cutoff -<br>Required lambda referred to<br>lambda sensor fitting location - | See 'Catalyst Monitoring'<br>Cranking or Engine started and<br>running.<br>> 2 revs.<br>< 1.6.                                                                                                    | 10 s         | 2 Driv<br>Cycle |
|                                                   |               |                                                                                      |                                                                                                                                                                                        |                                          |                                                                                                                                                                                                                       | P0135, P00D1 (npl), P00D1 (sig),<br>P2626, P0032, P0031, P0030,<br>P2237 (max), P2237 (npl), P2237<br>(sig), P0132, P0131, P2243,<br>P2251, P064D (max), P064D (min),<br>P064D (npl), P064D (sig) |              |                 |
|                                                   |               |                                                                                      |                                                                                                                                                                                        |                                          | Fault codes that disable P0154                                                                                                                                                                                        | P0155, P00D3, P00D3, P2629,<br>P0052, P0051, P0050, P2240<br>(max), P2240 (npl), P2240 (sig),<br>P0152, P0151, P2247, P2254,<br>P064E (max), P064E (min), P064E<br>(npl), P064E (sig)             |              |                 |
| LSVVn                                             | o/ P0040      | Checks to see if the connectors are<br>fitted to the correct bank specific<br>sensor | Fuelling regulation on each bank is<br>opposite (lean rich / rich lean). If the<br>expected lamda is not seen and<br>exceeds a threshold for a time<br>period then a fault is declared | 1.20 / 0.8<br>5 s                        | UHEGO Sensor ready -<br>Engine Speed -<br>Battery voltage -                                                                                                                                                           | See 'catalyst Monitoring'<br>Cranking or Engine started and<br>running.<br>10.7 v < vbatt < 16. 1 v                                                                                               |              |                 |
|                                                   |               |                                                                                      |                                                                                                                                                                                        |                                          | Fault codes that disable P0040                                                                                                                                                                                        | P054C, P054A, P052C, P052A,<br>P000D, P0024, P000B, P0014,<br>P000C, P0021, P000A, P0011                                                                                                          |              |                 |

|                          |                                     |               |                                                         | Oxygen Sensor Mon                                                                                                                       | itoring Ups                                      | stream                                                                                        |                                                                                                                   |              |                   |
|--------------------------|-------------------------------------|---------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Compone                  | ent/System                          | Fault<br>Code | Malfunction Strategy Description                        | Malfunction Criteria                                                                                                                    | Threshold<br>Value                               | Secondary Parameters                                                                          | Enable Conditions                                                                                                 | Time<br>Req. | MIL<br>illum.     |
| Oxygen Sense<br>(UHEGO)  | ors Upstream                        |               |                                                         |                                                                                                                                         |                                                  |                                                                                               |                                                                                                                   |              |                   |
| Electrical<br>monitor IC | LSUKSmax<br>LSUKS2max               |               | ,                                                       | Power stage internal check                                                                                                              |                                                  | Ignition -<br>Battery voltage -                                                               | On<br>10.7 v < vbatt < 16. 1 v                                                                                    | 0.2 s        | 2 Drive<br>Cycles |
|                          | LSUKSmin<br>LSUKS2min               |               | Short to ground                                         |                                                                                                                                         |                                                  | UHEGO Sensor ready -                                                                          | See 'catalyst Monitoring'                                                                                         |              |                   |
|                          | LSUIAsig<br>LSUIA2sig<br>(DICLSU)   |               | Open circuit detected at IA<br>(calibrating line)       | Sensor voltage<br>for                                                                                                                   | > 4.8 v<br>> 2 s                                 | Battery voltage -<br>In fuel cut.<br>Exhaust temperature (tavvkm) -                           | 10.7 v < vbatt < 16.1 v<br>< 750 °C                                                                               | 3 s          |                   |
|                          | LSUIPmax<br>LSUIP2max               |               | Open circuit detected at IP line<br>(pump current line) | During λ≠ 1 desired conditions<br>voltage indicates λ= 1 for an<br>accumulated air flow mass<br>or                                      | 1.49v ~ 1.51v<br>0.2 kg<br>or                    | UHEGO Sensor ready -<br>Engine Speed -<br>Battery voltage -                                   | See 'catalyst Monitoring'<br>Engine started and running.<br>10.7 v < vbatt < 16.1 v                               |              |                   |
|                          | LSUIPnpl<br>LSUIP2npl               |               |                                                         | If the sensor stays within λ= 1 limits<br>during a forced fueling change<br>(lambda controller output<br>observation)                   | 1.49v ~ 1.51v<br>> 0.1                           |                                                                                               |                                                                                                                   | 5 s          |                   |
|                          | LSUIPsig<br>LSUIP2sig               |               |                                                         | or<br>If the sensor stays within λ= 1 limits<br>during overrun/fuel cut for a time<br>period                                            | or<br>1.49v ~ 1.51v<br>for<br>> 5 s              |                                                                                               |                                                                                                                   |              |                   |
|                          |                                     |               |                                                         |                                                                                                                                         |                                                  |                                                                                               | P0133, P0135, P00D1 (npl), P00D1<br>(sig)                                                                         |              |                   |
|                          | LSUUNsig<br>LSUUN2sig               | P2247         | (Nernst Cell Voltage)                                   | Sensor signal voltage high or low<br>whilst implausibly high resistance<br>condition exist                                              | > 4.7 v<br>or<br>< 0.2 v<br>For 1 s<br>> 950 ohm | Fault codes that disable P2240<br>UHEGO Sensor ready -<br>Engine Speed -<br>Battery voltage - | P0153, P0155, P00D3, P00D3<br>See 'catalyst Monitoring'<br>Engine started and running.<br>10.7 v < vbatt < 16.1 v | 1s           |                   |
|                          | LSUVMsig<br>LSUVM2sig               |               | Line interruption of sensor line VM<br>(Virtual Ground) | Sensor signal voltage<br>whilst and implausibly high<br>resistance condition exist                                                      | 1.47v ~<br>1.53v<br>for 5 s<br>> 950 ohm         |                                                                                               |                                                                                                                   | 5 s          |                   |
|                          | max / ICLSUmin<br>SUnpl / ICLSUsig  |               | Internal IC fault of UHEGO                              | Short to Vbatt<br>Short to ground                                                                                                       |                                                  | UHEGO Sensor ready -<br>Engine Speed -                                                        | See 'catalyst Monitoring'<br>Cranking or Engine started and<br>running.                                           | 0.2 s        |                   |
|                          | nax / ICLSU2min<br>2npl / ICLSU2sig | P064E         |                                                         | Condition communication error of<br>SPI interface to evaluation IC<br>Condition write error at INIT<br>register of evaluation IC of LSU |                                                  | Battery voltage -                                                                             | 10.7 v < vbatt < 16.1 v                                                                                           | 10 s         |                   |

## 9. HEGO (LSF AND LSH) Sensor Monitoring

## 9.1. Fault Codes

P0138 - O2 Sensor Circuit High Voltage (Bank 1 Sensor 2) P0158 - O2 Sensor Circuit High Voltage (Bank 2 Sensor 2) P0144 - O2 Sensor Circuit High Voltage (Bank 1 Sensor 3) P0164 - O2 Sensor Circuit High Voltage (Bank 2 Sensor 3) P0137 - O2 Sensor Circuit Low Voltage (Bank 1 Sensor 2) P0157 - O2 Sensor Circuit Low Voltage (Bank 2 Sensor 2) P0143 - O2 Sensor Circuit Low Voltage (Bank 1 Sensor 3) P0163 - O2 Sensor Circuit Low Voltage (Bank 2 Sensor 3) P0136 - O2 Sensor Circuit (Bank 1 Sensor 2) P0156 - O2 Sensor Circuit (Bank 2 Sensor 2) P0142 - O2 Sensor Circuit (Bank 1 Sensor 3) P0162 - O2 Sensor Circuit (Bank 2 Sensor 3) P0141 - O2 Sensor Heater Circuit (Bank 1 Sensor 2) P0161 - O2 Sensor Heater Circuit (Bank 2 Sensor 2) P0147 - O2 Sensor Heater Circuit (Bank 1 Sensor 3) P0167 - O2 Sensor Heater Circuit (Bank 2 Sensor 3) P0038 - HO2S Heater Control Circuit High (Bank 1, Sensor 2) P0037 - HO2S Heater Control Circuit Low (Bank 1, Sensor 2) P0036 - HO2S Heater Control Circuit (Bank 1, Sensor 2) P0058 - HO2S Heater Control Circuit High (Bank 2, Sensor 2) P0057 - HO2S Heater Control Circuit Low (Bank 2, Sensor 2) P0056 - HO2S Heater Control Circuit (Bank 2, Sensor 2) P0044 - HO2S Heater Control Circuit High (Bank 1, Sensor 3) P0043 - HO2S Heater Control Circuit Low (Bank 1, Sensor 3) P0042 - HO2S Heater Control Circuit (Bank 1, Sensor 3) P0064 - HO2S Heater Control Circuit High (Bank 2, Sensor 3) P0063 - HO2S Heater Control Circuit Low (Bank 2, Sensor 3) P0062 - HO2S Heater Control Circuit (Bank 2, Sensor 3) P0054 - HO2S Heater Resistance (Bank 1, Sensor 2) P0060 - HO2S Heater Resistance (Bank 2, Sensor 2) P0055 - HO2S Heater Resistance (Bank 1, Sensor 3) P0061 - HO2S Heater Resistance (Bank 2, Sensor 3)

#### 9.2. System Overview

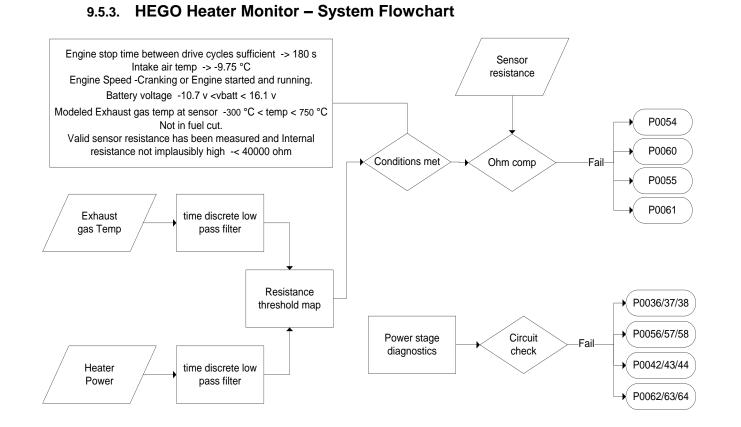
As for the UHEGO sensor, the HEGO sensor diagnostics consist of the analysis of all the components that are required to produce a valid fueling signal and are split into two groups, heater and sensor signal diagnosis. Again, these can be split further into circuit and performance diagnosis. Circuit tests are continuously performed whereas performance checks run once per drive cycle. Certain diagnosis for LSF and LSH are identical and will be described in generic terms. Unique diagnosis will be specifically referred to in application to LSF or LSH.

## 9.3. 'HEGO Sensor Ready' Conditions

Before the sensor is classified as ready for use several conditions have to be satisfied. First the sensor has to be up to temperature and temperature control must be active. This is explained in section 9.4 Sensor Heater Control. The second is to ensure that the sensor is indicating plausible voltages. The HEGO sensor is a binary sensor and will give definitive high or low voltage levels. The voltage check looks to see if sensor output departs from the voltage band around 0.45 V (defined by upper and lower voltages  $0.4 V \sim 0.6 V$ , when the sensor is not deemed ready) but is lower than an absolute maximum 1.08 V. Because of the electrical circuit in the ECU, leaving the 0.45 V band means that the internal resistance of the Nernst cell has fallen below a certain threshold indicating that the ceramic temperature is sufficiently high. (Note the actual temperature condition monitor is performed by a resistance check and not a voltage check). At high temperatures the rich branch of the sensor characteristics drops, and the 0.45 V band is then defined as  $0.4 V \sim 0.5 V$ . If the sensor voltage does not leave the 0.45 V band although the sensor is sufficiently heated a sensor fault is assumed. Under these circumstances and if a signal wire break is not detected, then after 20 s the 'Sensor Ready' condition is forced. These will enable function 9.6.3.3 'Range or Signal Stuck' to operate and detect a functioning sensor (i.e. apply a controlled fuel ramp and observe sensor voltage for correct reaction). Any failure in the heater control or sensor diagnostics will set the HEGO ready flag to 'not ready' and a fault is declared.

#### 9.4. Sensor Heater Control

The HEGO sensor heater control acts in a similar method as for the UHEGO sensor. The main difference is that each sensor will operate with different Dew Point models because of the different sensor locations.


#### 9.5. Heater Diagnostics

#### 9.5.1. Heater power stage monitoring

**P0036, P0037, P0038, P0056, P0057, P0058, P0042, P0043, P0044, P0062, P0063 and P0064.** Fault recognition, read-out and storage of the power stage fault information is done within the Powerstage hardware. Fault verification and OBD-fault storage is done within the EMS software. This is performed by observing the fault status information placed in an error-trace-buffer. If a fault has been signaled a counter is activated which has been set with a 'non-calibrateable' time (300 ms). After this time has elapsed, a verification test pulse is initiated in order to confirm the fault. One calculation raster later (100 ms) the verification check is performed. If, during the verification check, the same fault is recognized, the fault is considered to be verified. Faults which cannot be definitely detected are ignored.

#### 9.5.2. Heater monitoring

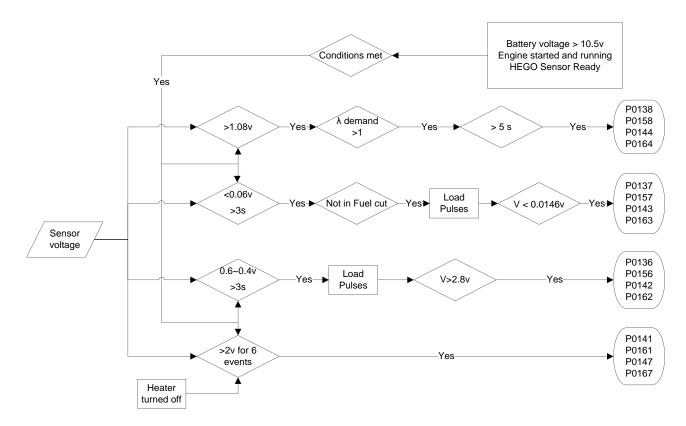
**P0050, P0055, P0060 and P0061.** There is a correlation between ceramic temperature and internal resistance. For a sensor with defective heating, the ceramic temperature is lower compared to that of a fault free sensor, meaning the internal resistance of the sensor will be higher in comparison. The diagnostic compares the internal resistance of the heater to a threshold. This threshold is dependent on filtered values of exhaust gas temperature, exhaust mass flow and heater power.



## 9.6. Signal Diagnostics

## 9.6.1. Electrical monitoring

**P0138, P0158 P0144 and P0164**. Sensor voltage short to battery voltage. Sensor voltage stuck high for an implausible period whilst lambda demand is not rich.


**P0137, P0157, P0143 and P0163**. Sensor short to ground. If the sensor voltage is below a threshold for an implausible period whilst not in fuel cut or oxygen neutralization, a fault suspicion is raised. Further observations of sensor voltage are made after 3 load pulses. These load pulses are the application of a controlled voltage pulse across the sensor. For the case of a short to ground if the difference between the measured sensor voltage during the load pulse is below a threshold then a fault is confirmed.

and the JAGUAR

**P0136, P0156, P0142 and P0162**. Sensor wire break if the sensor voltage stays between limits for an implausible time then a load pulse is requested. For a wire break if the difference between the measured sensor voltage during the load pulse is above a threshold, then a fault is confirmed.

**P0141, P0161, P0147 and P0167.** Sensor and heater short circuit. If this short circuit exists then a voltage change in the sensor voltage will occur during heater switch off. If this voltage change is greater than a threshold for a number of heater turn off events, then a fault is declared.

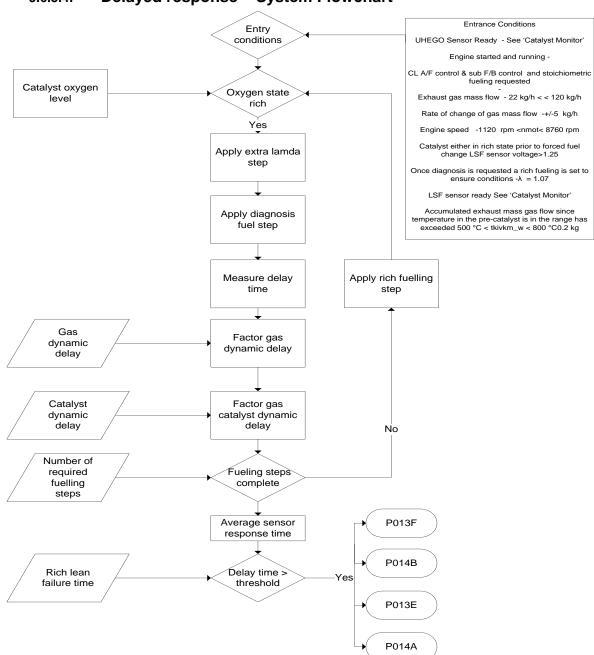
#### 9.6.2. HEGO Electrical Monitoring – System Flowchart

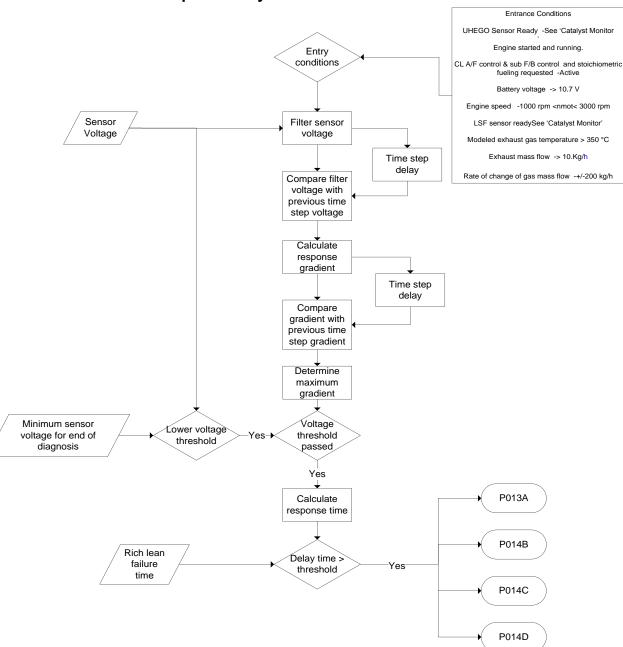


### 9.6.3. HEGO Sensor dynamics

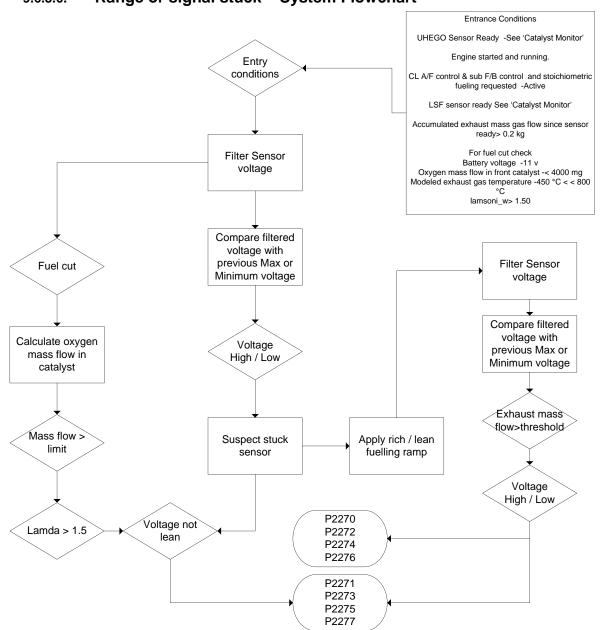
HEGO sensor dynamics are diagnosed for three performance deterioration deficiencies. Delayed response, transient response and range or stuck response. The delayed and transient response checks are made in order to ensure correct catalyst efficiency diagnosis, so these checks are only performed on the LSF sensor.

# 9.6.3.1. Delayed response


**P013F, P014B, P013E and P014A. (LSF Only).** The delayed response monitor checks the sensor's 'time to respond' reaction to a fueling step change. The actual time taken for a sensor to react to a fueling change is affected by three components, the oxygen storage dynamics of the catalyst, travel time of the exhaust gas and the actual response time of the sensor. The oxygen storage dynamics of the catalyst are modeled based upon oxygen storage capacity and exhaust mass gas flow which will give a catalyst response time for a fueling change. Similarly, the exhaust gas travel time is modeled based upon exhaust gas mass flow. The sum of these times will give the delay to any fueling change that the sensor will be exposed. The subtraction of these two factors from the total time that a fueling change is seen by the sensor, is the actual response time of the sensor. The actual analysis occurs over a number of forced fueling swings in a rich to lean fueling step change, once entrance conditions are met. The final result is filtered from these step changes and if the delay time is sufficient to exceed emissions or affect catalyst diagnosis as defined by a threshold, then a fault is raised. The monitor will run once per drive cycle.


## 9.6.3.2. Transient response

**P013B, P013D, P013A and P013C. (LSF Only).** The transient response monitor checks the sensor's rate of response whilst reacting to a fuel cut off event. The voltage output of the sensor is filtered and compared with its previous value based upon a fixed time delay. During the fuel cut event the maximum 'response gradient' is filtered and converted to a response time. A slow sensor will have a small response gradient and a large time constant. A correctly acting sensor will have a larger response gradient and a smaller time constant. If this time constant is sufficient to exceed emissions or affect catalyst diagnosis as defined by a threshold then a fault is raised. The monitor will run once per drive cycle.


## 9.6.3.3. Range or signal stuck

**P2270, P2271, P2272, P2273, P2274, P2275, P2276 and P2277.** The range check or signal stuck diagnostic checks the signal voltage level to see if it is stuck high, stuck low or not responding. During normal operation a normally operating sensor should see high and low voltage levels in response to rich and lean fueling events. A comparison is made to find the maximum or minimum between a filtered sensor voltage and the previous maximum or minimum voltage. This is then compared to thresholds to establish if the sensor voltage has achieved rich or lean readings. If they have not seen rich or lean voltage levels then active fueling ramps are applied. If the sensor voltage does not show rich or lean readings after these fueling ramps, then a fault is diagnosed. In addition, during fuel cut off events of sufficient duration that ensure that each sensor should be reading lean voltage levels, then a voltage comparison is made and faults diagnosed if voltage readings are not showing lean voltage levels.





## 9.6.3.5. Transient response – System Flowchart





# 9.7. HEGO (LSF and LSH) Sensor Monitoring Tables

|                                                    |               | C                                | Dxygen Sensor Monitoring                                                     | g Downstr          | eam LSF and LSH                                   |                                |              |        |
|----------------------------------------------------|---------------|----------------------------------|------------------------------------------------------------------------------|--------------------|---------------------------------------------------|--------------------------------|--------------|--------|
| Component/System                                   | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria                                                         | Threshold<br>Value | Secondary Parameters                              | Enable Conditions              | Time<br>Req. | MIL    |
| Oxygen Sensors<br>Downstream (HEGO LSF<br>AND LSH) |               |                                  |                                                                              |                    |                                                   |                                |              |        |
| Electrical monitoring                              |               |                                  |                                                                              |                    |                                                   |                                |              |        |
| HEGOS2B1ElecMax                                    | P0138         | Sensor voltage short to V Batt   | Sensor voltage stuck high for                                                |                    | HEGO Sensors ready -                              | See 'catalyst Monitoring'      | 5 s          | 2 Driv |
| HEGOS2B2ElecMax                                    | P0158         |                                  | implausible period whilst lambda                                             | > 1.9 v            | Battery voltage -                                 | > 10.7 v                       |              | Cycle  |
| HEGOS3B1ElecMax                                    | P0144         |                                  | demand is non-rich.                                                          | for<br>> 0.1 s     | Engine Speed -                                    | Cranking or Engine started and |              |        |
| HEGOS3B2ElecMax                                    | P0164         |                                  |                                                                              | > 0.1 5            |                                                   | running.                       |              |        |
|                                                    |               | Sensor short to ground           | If the sensor voltage is below a                                             |                    |                                                   |                                | 3 s          |        |
| HEGOS2B1ElecMin                                    | D0127         |                                  | threshold for an implausible period                                          |                    |                                                   |                                | 0.3          |        |
|                                                    |               |                                  | whilst not in fuel cut or oxygen                                             | < 0.06 v           |                                                   |                                |              |        |
| HEGOS2B2ElecMin                                    |               |                                  | neutralization a fault suspicion is                                          | for<br>> 3 s       |                                                   |                                |              |        |
| HEGOS3B1ElecMin                                    |               |                                  | raised. Further observations of                                              | > 3 8              |                                                   |                                |              |        |
| HEGOS3B2ElecMin                                    | P0163         |                                  | sensor voltage are made after 3                                              |                    |                                                   |                                |              |        |
|                                                    |               |                                  | load pulses. These load pulse are the application of controlled voltage      |                    |                                                   |                                |              |        |
|                                                    |               |                                  | pulse across the sensor. For the                                             |                    |                                                   |                                |              |        |
|                                                    |               |                                  | case of a short to ground if the                                             |                    |                                                   |                                |              |        |
|                                                    |               |                                  | difference between the measured                                              | 0.01 v             |                                                   |                                |              |        |
|                                                    |               |                                  | sensor voltage during the load                                               |                    |                                                   |                                |              |        |
|                                                    |               |                                  | pulse is below a threshold then a                                            |                    |                                                   |                                |              |        |
|                                                    | <b>D</b> 0400 | Sensor wire break                | fault is confirmed.                                                          |                    |                                                   |                                |              | -      |
| HEGOS2B1ElecSig                                    |               | Sensor wire break                | If the sensor voltage stays between limits for implausible time then a       | 1.2 v ~ 1.9 v      |                                                   |                                | 3 s          |        |
| HEGOS2B2ElecSig                                    |               |                                  | load pulse is requested. For a wire                                          | for                |                                                   |                                |              |        |
| HEGOS3B1ElecSig                                    |               |                                  | break if the difference between the                                          | > 3 s              |                                                   |                                |              |        |
| HEGOS3B2ElecSig                                    | P0162         |                                  | load pulse sensor voltage is above                                           |                    |                                                   |                                |              |        |
|                                                    |               |                                  | a threshold a fault is confirmed.                                            | > 2.80 v           |                                                   |                                |              |        |
| HEGOS2B1ElecNpl                                    | P0141         | Sensor and heater short circuit  | If this short circuit exists then a                                          | > 2 v              |                                                   |                                | 6 events     |        |
| HEGOS2B2ElecNpl                                    | P0161         |                                  | voltage change in the sensor                                                 | for                |                                                   |                                |              |        |
| HEGOS3B1ElecNpl                                    | P0147         |                                  | voltage will occur during heater turn off. If this voltage change is greater | 6 events           |                                                   |                                |              |        |
| HEGOS3B2ElecNpl                                    |               |                                  | than a threshold for a number of                                             |                    |                                                   |                                |              |        |
| (HEGO_OBDElec)                                     |               |                                  | heater turn off events then a fault is                                       |                    |                                                   |                                |              |        |
|                                                    |               |                                  | declared.                                                                    |                    |                                                   |                                |              |        |
|                                                    |               |                                  |                                                                              |                    | Fault codes that disable P0138,<br>P0136 or P0141 | P0038, P0037, P0036            |              |        |
|                                                    |               |                                  |                                                                              |                    | Fault codes that disable P0158,<br>P0156 or P0161 |                                |              |        |
|                                                    |               |                                  |                                                                              |                    | Fault codes that disable P0144,<br>P0142 or P0147 |                                |              |        |
|                                                    |               |                                  |                                                                              |                    | Fault codes that disable P0164,<br>P0162 or P0167 | P0064, P0063, P0062            |              |        |

|                                                    |               |                                                                | Oxygen Sensor Monitori                                           | ng Downstrea                  | am LSF and LSH                                             |                                                                   |              |               |
|----------------------------------------------------|---------------|----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|--------------|---------------|
| Component/System                                   | Fault<br>Code | Malfunction Strategy<br>Description                            | Malfunction Criteria                                             | Threshold Value               | Secondary Parameters                                       | Enable Conditions                                                 | Time<br>Req. | MIL<br>illum. |
| Oxygen Sensors<br>Downstream (HEGO LSF<br>AND LSH) |               |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| Heater power stage monitor                         |               |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS2B1HtrPsMax                                   | P0038         | Powerstage transistor voltage                                  | Monitors the voltage drop at the                                 |                               | Battery voltage -                                          | 10.7 v < vbatt < 16.1 v                                           | 0.2 s        | 2 Drive       |
| HEGOS2B1HtrPsMin                                   | P0037         | check                                                          | power stage transistor during the                                |                               | Engine Speed -                                             | Cranking or Engine started and                                    |              | Cycles        |
| HEGOS2B1HtrPsSig                                   | P0036         |                                                                | switching of the PWM heater<br>control expected voltage levels.  |                               |                                                            | Running.                                                          |              |               |
| HEGOS2B2HtrPsMax                                   | P0058         |                                                                | control expected voltage levels.                                 |                               |                                                            |                                                                   |              |               |
| HEGOS2B2HtrPsMin                                   | P0057         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS2B2HtrPsSig                                   | P0056         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS3B1HtrPsMax                                   | P0044         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS3B1HtrPsMin                                   | P0043         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS3B1HtrPsSig                                   | P0042         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS3B2HtrPsMax                                   | P0064         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS3B2HtrPsMin                                   | P0063         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS3B2HtrPsSig                                   | P0062         |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| (HEGO_OBDHtrPs)                                    |               |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| Heater monitoring                                  |               |                                                                |                                                                  |                               |                                                            |                                                                   |              |               |
| HEGOS2B1HtgNpl                                     | P0054         | There is a correlation between                                 | The internal resistance of the                                   | see                           | Engine stop time between drive                             | 400                                                               | -            |               |
| HEGOS2B2HtgNpl                                     | P0060         | ceramic temperature and internal                               | heater is compared to a threshold.                               | resRiThresDHtg_MAP<br>(table) | cycles sufficient -                                        | > 180 s                                                           | 5 s          |               |
| HEGOS3B1HtgNpl                                     | P0055         | resistance. With a sensor with defective heating, the ceramics | This threshold is dependent on<br>filtered values of exhaust gas | (lable)                       | Intake air temp -                                          | > -9.75 °C                                                        |              |               |
| HEGOS3B2HtgNpl                                     | D0061         | temperature usually is lower                                   | temperature and heater power. If                                 |                               | Engine Speed -                                             | Cranking or Engine started and                                    |              |               |
| TIE OOSSB2T lightpi                                | 1 0001        | compared to that of a faultless                                | the resistance is higher than this                               |                               |                                                            | running.                                                          |              |               |
|                                                    |               | sensor. This means that the                                    | threshold then a fault is declared                               |                               | Battery voltage -                                          | 10.7 v <vbatt 16.1="" <="" td="" v<=""><td></td><td></td></vbatt> |              |               |
|                                                    |               | internal resistance of the sensor is                           |                                                                  |                               | Modeled Exhaust gas temp at<br>sensor -                    | 300 °C < temp < 750 °C                                            |              |               |
|                                                    |               | higher when compared to a fault free heated sensor.            |                                                                  |                               | Not in fuel cut.                                           |                                                                   |              |               |
|                                                    |               | nee neated sensor.                                             |                                                                  |                               | Valid sensor resistance has been                           |                                                                   |              |               |
| (HEGO_OBDHtg)                                      |               |                                                                |                                                                  |                               | measured and Internal resistance<br>not implausibly high - | < 40000 ohm                                                       |              |               |
|                                                    |               |                                                                |                                                                  |                               | Fault codes that disable P0054                             | P0038, P0037, P0036                                               |              |               |
|                                                    |               |                                                                |                                                                  |                               | Fault codes that disable P0060                             | P0058, P0057, P0056                                               |              |               |
|                                                    |               |                                                                |                                                                  |                               | Fault codes that disable P0056                             | P0044, P0043, P0042                                               |              |               |
|                                                    |               |                                                                |                                                                  |                               | Fault codes that disable P0061                             | P0064, P0063, P0062                                               |              |               |

| resRiThresDHtg_MAP - Internal resistance threshold | ld for heater performance diagnosis |
|----------------------------------------------------|-------------------------------------|
|----------------------------------------------------|-------------------------------------|

|          |        | y x | 200 | 300 | 400 | 500 | 550 |
|----------|--------|-----|-----|-----|-----|-----|-----|
| input x  | °C     | 0.6 | 700 | 700 | 700 | 700 | 700 |
| input y  | Ht pwr | 0.7 | 700 | 700 | 700 | 700 | 700 |
| output w | Ohm    | 0.8 | 700 | 700 | 700 | 700 | 700 |
|          |        | 0.9 | 700 | 700 | 700 | 700 | 700 |
|          |        | 1.0 | 700 | 700 | 700 | 700 | 700 |

|                                 |                                             |               | C                                                                                                                       | Dxygen Sensor Monitorin                                                                                                                                                                                                                                                                                                                                                                            | g Downstr          | eam LSF and LSH                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                   |
|---------------------------------|---------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Com                             | ponent/System                               | Fault<br>Code | Malfunction Strategy Description                                                                                        | Malfunction Criteria                                                                                                                                                                                                                                                                                                                                                                               | Threshold<br>Value | Secondary Parameters                                                                                                                                           | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time<br>Req.                                                                                                                    | MIL<br>illum.     |
| Oxygen S<br>Downstre<br>AND LSH | am (HEGO LSF                                |               |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                 |                   |
| For senso                       | Transient response                          |               | Transient response. Checks for<br>reduction in the transient signal<br>gradient during a rich to lean<br>fueling event. | The voltage output of the sensor is<br>filtered and compared with its<br>previous value based upon a fixed<br>time delay. During the fuel cut<br>event the maximum 'response<br>gradient' is filtered and this<br>converted to a response time. A<br>slow sensor will have a small<br>response gradient and a large time<br>constant. If the constant is above a<br>threshold a fault is declared. |                    | UHEGO Sensor Ready -<br>Engine Speed -<br>CL A/F control & sub F/B control<br>and stoichiometric fueling<br>requested -<br>Battery voltage -<br>Engine speed - | See 'Catalyst Monitor'<br>Cranking or Engine started and<br>running.<br>Active<br>> 10.7 v<br>1000 rpm < nmot < 3000 rpm                                                                                                                                                                                                                                                                                                                                                        | 3 s                                                                                                                             | 2 Drive<br>Cycles |
| Rich to<br>lean                 | HEGOS2B1PT1RL<br>HEGOS2B2PT1RL<br>(DDYLSTR) | P013C         |                                                                                                                         | Rich to lean<br>Failure time threshold                                                                                                                                                                                                                                                                                                                                                             | > 0.8 s            | LSF sensor ready<br>Modeled exhaust gas temperature<br>(tafso) -<br>Exhaust mass flow -                                                                        | See 'Catalyst Monitor'<br>>350 °C<br>> 10 Kg/h                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                 |                   |
|                                 |                                             |               |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                    |                    | Fault codes that disable P013A<br>Fault codes that disable P013C                                                                                               | P0038, P0037, P0036, P2270, F<br>P0496, P0497, P2231, P2195, F<br>P0170, P0130, P0134, P0133, F<br>P00D1 (npl), P00D1 (sig), P2626,<br>P0031, P0030, P2237 (max), P22<br>P2237 (sig), P0132, P0131, P2243<br>P0040, P064D (max), P064D (min<br>(npl), P064D (sig)<br>P0058, P0057, P0056, P2272, F<br>P2234, P0496, P0497, P2197, F<br>P0173, P0150, P0154, P0153, F<br>P0050, P2240 (max), P2240 (npl)<br>(sig), P0152, P0151, P2247, P225<br>(max), P064E (min), P064E (npl), | 22196,<br>20135,<br>P0032,<br>37 (npl),<br>5, P2251,<br>9, P064D<br>22273,<br>22198,<br>20155,<br>P0051,<br>, P2240<br>4, P064E |                   |

# Oxygen Sensor Monitoring Downstream LSF and LSH

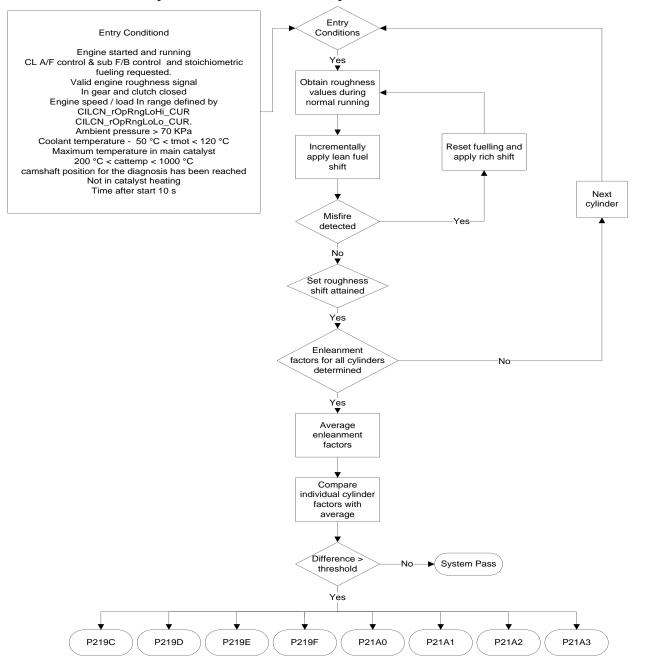
| Comp                               | onent/System             | Fault<br>Code | Malfunction Strategy Description                                                                            | Malfunction Criteria                                                                                                                                 | Threshold<br>Value | Secondary Parameters                                                                                                                                                                                                                                                                                                                          | Enable Conditions                                                                                                                                                                                                                                                                                           | Time<br>Req. | MIL<br>illum.     |
|------------------------------------|--------------------------|---------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Oxygen So<br>Downstrea<br>AND LSH) | am (HEGO LSF             |               |                                                                                                             |                                                                                                                                                      |                    |                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                             |              |                   |
|                                    | Delayed response         |               | Delayed response. Checks for<br>reduction in the sensor response to<br>a forced rich to lean fueling event. | If the time taken for sensor voltage<br>to pass a threshold from the start<br>of forced fuel event is above a<br>threshold then a fault is declared. |                    | UHEGO Sensor Ready -<br>Engine Speed –<br>CL A/F control & sub F/B control<br>and stoichiometric fueling requested<br>Exhaust gas mass flow -<br>Rate of change of gas mass flow -<br>Catalyst in rich state prior to forced<br>fuel change – sensor voltage -<br>Once diagnosis is requested a lean<br>fueling is set to ensure conditions - | See 'Catalyst Monitor'<br>Cranking or Engine started and<br>running.<br>Active<br>22 kg/h < msabvvk < 120 kg/h<br>-7 kg/h < Δ msabvvk < 7 kg/h<br>> 1.25 v<br>λ > 1.07                                                                                                                                      | 3 s          | 2 Drive<br>Cycles |
| For sensor                         | 2 (LSF)<br>HEGOS2B1DlyRL | P013E         |                                                                                                             | Rich to lean                                                                                                                                         |                    | LSF sensor ready<br>Accumulated exhaust mass gas flow                                                                                                                                                                                                                                                                                         | See 'Catalyst Monitor'                                                                                                                                                                                                                                                                                      |              |                   |
| Rich to<br>lean                    | Rich to                  |               |                                                                                                             | Failure time threshold                                                                                                                               | > 0.6 s            | since temperature in the pre-catalyst<br>is in the range has exceeded<br>Engine speed -                                                                                                                                                                                                                                                       | 500 °C < tkivkm_w < 900 °C<br>> 0.2 kg<br>1120 rpm <nmot< 8760="" rpm<="" td=""><td></td><td></td></nmot<>                                                                                                                                                                                                  |              |                   |
|                                    |                          |               |                                                                                                             |                                                                                                                                                      |                    |                                                                                                                                                                                                                                                                                                                                               | P2271, P0496, P0497, P0133,<br>P2231, P2626, P0032, P0031,<br>P0030, P0135, P00D1 (npl),<br>P00D1 (sig), P064D (max), P064D<br>(min), P064D (npl), P064D (sig),<br>P2237 (max), P2237 (npl), P2237<br>(sig), P0132, P0131, P2243,<br>P2251, P0130, P0040, P2195,<br>P2196, P0170, P0134,                    |              |                   |
|                                    |                          |               |                                                                                                             |                                                                                                                                                      |                    |                                                                                                                                                                                                                                                                                                                                               | P0058, P0057, P0056, P2272,<br>P2273, P0496, P0497, P0153,<br>P2234, P2629, P0155, P00D3,<br>P00D3, P0052, P0051, P0050,<br>P064E (max), P064E (min), P064E<br>(npl), P064E (sig), P2240 (max),<br>P2240 (npl), P2240 (sig), P0152,<br>P0151, P2247, P2254, P0150,<br>P2197, P2198, P0173, P0154,<br>P0040, |              |                   |

| Component/System                                                                          | Fault<br>Code  | Malfunction Strategy Description                                                                            | Malfunction Criteria                                                                                                                                                                                                                                                                                                                                                                                            | Threshold<br>Value   | Secondary Parameters                                                                                                                                                                                   | Enable Conditions                                                                                                                     | Time<br>Reg. | MIL<br>illum.     |
|-------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Oxygen Sensors<br>Downstream (HEGO LSF<br>AND LSH)                                        |                |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                                                                                                                                                                                                        |                                                                                                                                       |              |                   |
| Range Check<br>HEGOS2B1TarLean<br>HEGOS2B1TarRich<br>HEGOS2B2TarLean                      | P2271<br>P2272 | Range Check. Check the voltage<br>level of the sensor to see if it is<br>stuck high, low or not responding. | A filtered sensor voltage is<br>compared to its self and compared<br>for its maximum and minimum<br>values. If the max and minimum<br>values do not exceed rich and lean<br>thresholds then the sensor voltage<br>is considered stuck. If a stuck state<br>is suspected then forced lean and<br>rich fueling ramps are applied and<br>sensor reaction observed. A fault is<br>declared if no sensor reaction is | > 0.71 v<br>< 0.20 v | UHEGO Sensor Ready -<br>Engine Speed -<br>CL A/F control & sub F/B control<br>and stoichiometric fueling<br>requested -<br>LSF sensor ready<br>Accumulated exhaust mass gas<br>flow since sensor ready | See 'Catalyst Monitor'<br>Cranking or Engine started and<br>running.<br>See 'Catalyst Monitor'<br>See 'Catalyst Monitor'<br>> 0.20 kg | 10 s         | 2 Drive<br>cycles |
| HEGOS2B2TarRich                                                                           | P2273          |                                                                                                             | An additional check is also made<br>during fuel cut events that if the<br>oxygen mass in the catalyst has<br>exceeded calibrated level a lean<br>voltage is seen.                                                                                                                                                                                                                                               |                      | Fault codes that disable P2272 or                                                                                                                                                                      | P0497, P0459, P0458, P0444                                                                                                            | -            |                   |
| HEGOS3B1TarLean<br>HEGOS3B1TarRich<br>HEGOS3B2TarLean<br>HEGOS3B2TarRich<br>(HEGOD_LimDs) | P2275<br>P2276 |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 | > 0.74 v<br>< 0.30 v | LSH sensor ready<br>Accumulated exhaust mass gas<br>flow since sensor ready<br>For fuel cut check<br>Battery voltage -<br>Oxygen flow since fuel cut -<br>Modeled exhaust gas temperature -            | See 'Catalyst Monitor'<br>> 0.2 kg<br>> 10.7 v<br>> 4000 mg<br>450 °C < tahso < 800 °C                                                |              |                   |
|                                                                                           |                |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | Fault codes that disable P2276 or                                                                                                                                                                      | P0300, P0459, P0458, P0444                                                                                                            |              |                   |

#### **10. Individual Cylinder AFR Monitor**

#### 10.1.Fault Codes

- P219C Cylinder 1 Air-Fuel Ratio Imbalance
  P219D Cylinder 2 Air-Fuel Ratio Imbalance
  P219E Cylinder 3 Air-Fuel Ratio Imbalance
  P219F Cylinder 4 Air-Fuel Ratio Imbalance
- P21A0 Cylinder 5 Air-Fuel Ratio Imbalance
- P21A1 Cylinder 6 Air-Fuel Ratio Imbalance
- P21A2 Cylinder 7 Air-Fuel Ratio Imbalance (V8 only)
- P21A3 Cylinder 8 Air-Fuel Ratio Imbalance (V8 only)


#### **10.2.System Description**

An imbalance in individual cylinder air-fuel-ratio operating conditions is assessed using an enleanment roughness judgement method. Once the entry conditions have been met, roughness values for a cylinder, based upon crankshaft speed deviation, is determined then the fuelling to the selected cylinder is leaned out. This enleanment continues until a set roughness shift has been met or misfire detected. If misfire is detected the process is reset and a rich fuelling offset applied before the enleanment process is repeated. During this enleanment a rich fuel bias is applied to the remaining cylinders to compensate for the enleanment. This process is repeated for all cylinders and can occur simultaneously or in individual steps during a drive cycle and the data stored for later analysis.

### **10.3.Fault Decision**

Once a set 'enleanment' data is gathered an average of the lean shift fuelling factors is made. The individual factors are then compared against the average and if the difference is greater than a threshold then a fault is declared.

#### 10.4. Individual Cylinder AFR Monitor – System Flowchart and Tables



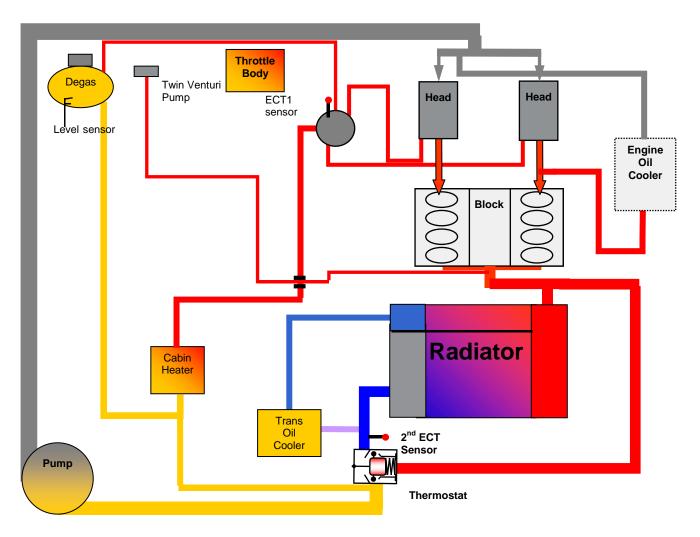
# Individual Cylinder AFR Monitoring

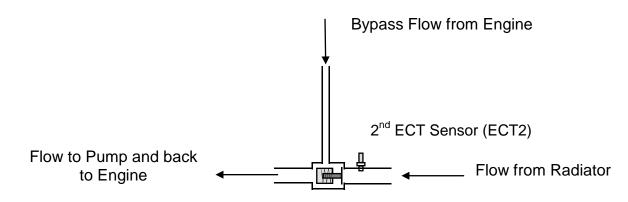
| Component/System                                   | Fault<br>Code | Malfunction Strategy Description                                                                                                                                                                                       | Malfunction Criteria                                                                                                                                                                                                                                                                                                                             | Threshold<br>Value | Secondary Parameters                                                                                                                                                                                                                                                                                                                                      | Enable Conditions                                                                                                                                    | Time<br>Req.                               | MIL<br>illum.     |
|----------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| Individual Cylinder AFR                            |               |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                      |                                            |                   |
| Cyl 2<br>Cyl 3<br>Cyl 4<br>Cyl 5<br>Cyl 6<br>Cyl 7 |               | assessed using an enleanment<br>roughness judgement method. The<br>amount of fuel enleanment is<br>obtained for all cylinders to<br>achieved a given roughness value<br>(measured from crank shaft speed<br>deviation) | Once a set 'enleanment' data is<br>gathered an average of the lean<br>shift fuelling factors is made. The<br>individual factors are then compared<br>against the average and if the<br>difference is greater than a<br>threshold then a fault is flagged. A<br>lean and rich decision can be made<br>for all cylinders and the cylinder<br>bank. | > 1.1              | Engine started and running.<br>CL A/F control & sub F/B control<br>and stoichiometric fueling<br>requested -<br>Valid engine roughness signal.<br>In gear and clutch closed.<br>Engine speed / load range -<br>Ambient pressure -<br>Coolant temperature -<br>Maximum temperature in main<br>catalyst -<br>Not in catalyst heating.<br>Time after start - | Active.<br>CILCN_rOpRngLoHi_CUR (table)<br>CILCN_rOpRngLoLo_CUR (table)<br>> 70 KPa<br>50 °C < ect1 < 120 °C<br>200 °C < cattemp < 1000 °C<br>> 10 s | Depend<br>s upon<br>drive<br>cycle<br>time | 2 Drive<br>Cycles |

#### Individual Cylinder AFR

#### CILCN\_rOpRngLoHi\_CUR

| input x  | rpm | 960 | 1000  | 1240 | 1520 | 2520 | 2560 |
|----------|-----|-----|-------|------|------|------|------|
| output w | %   | 0   | 39.75 | 60   | 60   | 60   | 0    |


#### CILCN\_rOpRngLoLo\_CUR


| input x  | rpm | 960    | 1000  | 1240  | 1520  | 2520  | 2560   |
|----------|-----|--------|-------|-------|-------|-------|--------|
| output w | %   | 191.25 | 24.75 | 24.75 | 24.75 | 24.75 | 191.25 |



## 11. Engine Cooling System - Thermostat Monitoring

## **11.1.System Schematic**

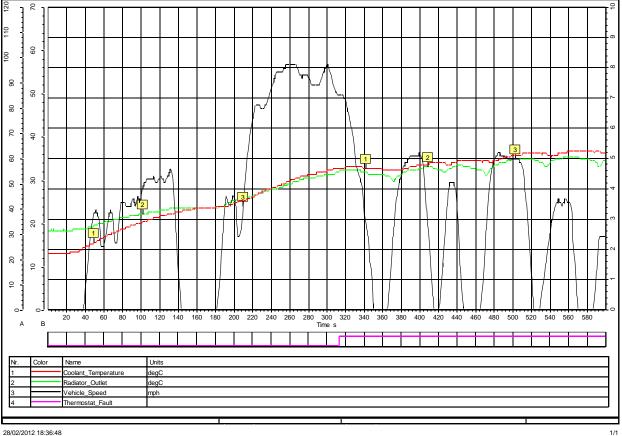




## **11.2.System Description**

**P0128.** The detection of a malfunctioning thermostat is determined through the use of a second coolant temperature sensor at the radiator outlet (ECT2). If a thermostat is incorrectly allowing coolant through the radiator, then the radiator out temperature will increase before the engine reaches its normal operating temperature.

A fault threshold is determined at start from the following look up table:


| ECT2 at engine start<br>(degC) | -20.3 | 0.0  | 15.0 | 30.0 | 45.0 | 60.0 |
|--------------------------------|-------|------|------|------|------|------|
| Fault threshold (degC)         | 60.0  | 45.0 | 33.8 | 24.0 | 14.3 | 9.8  |

Provided the following entry conditions are true:

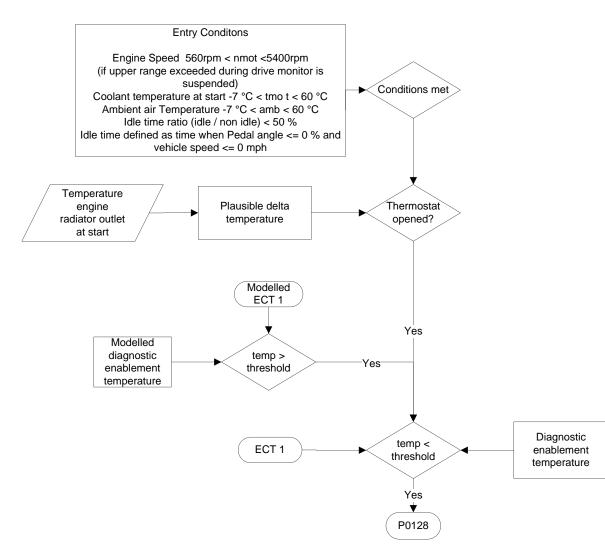
Engine speed between 560 and 5400 rpm Ambient temperature between -7.0 and 60.0 degrees C Engine coolant temperature at start between -7.0 and 60.0 degrees C Proportion of vehicle operation time at idle is less than 50%

Then if the radiator outlet temperature (ECT2) rises by more than the fault threshold before the engine coolant temperature (ECT1) has exceeded 80 degrees C, then a fault is declared. 80 degrees C is the highest temperature required to enable other diagnostics and is 11 degrees C (20 F) below the nominal thermostat temperature.

A second check is conducted based on the modeled value of ECT1. If the modeled temperature exceeds a threshold for a set period but the measured ECT1 is still below the diagnostic enablement temperature of 80 degrees C, then a thermostat fault is declared.



Typical Time to Detection for a failed Thermostat during Normal Driving


28/02/2012 18:36:48

Jaguar F-Type

JAGUAR

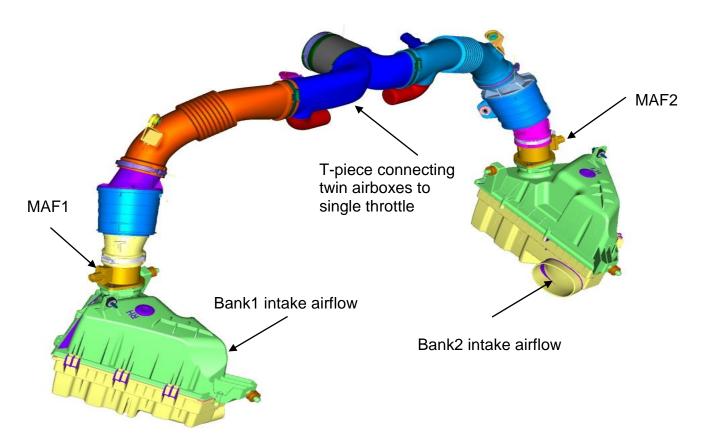
Fault Detection at 312 seconds

### 11.3. Thermostat Monitoring – System Flowchart and Tables

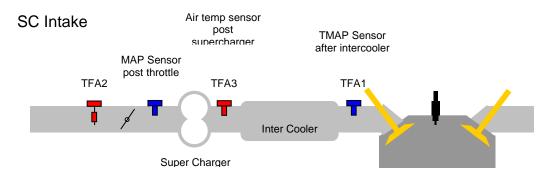


|                         |               |                                                     | Thermost                                                                                                                                                                                                                                                                                | tat Monitori                  | ing                                                                                                                                                                                                                                                         |                                                                                                           |                                           |                   |
|-------------------------|---------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|
| Component/System        | Fault<br>Code | Malfunction Strategy Description                    | Malfunction Criteria                                                                                                                                                                                                                                                                    | Threshold<br>Value            | Secondary Parameters                                                                                                                                                                                                                                        | Enable Conditions                                                                                         | Time<br>Req.                              | MIL<br>illum.     |
| Thermostat Monitor      |               |                                                     |                                                                                                                                                                                                                                                                                         |                               |                                                                                                                                                                                                                                                             |                                                                                                           |                                           |                   |
| <i>THMnpl</i><br>(DTHM) |               | Comparison of temperatures from<br>ECT 1 and ECT 2. | An open thermostat condition is<br>determined based upon an engine<br>start temperature differential<br>model. If the thermostat is open<br>and the actual main coolant<br>temperature ECT1 is below the<br>temperature that enables all other<br>diagnostics then a fault is declared. | (table)<br>< 80.3 °C          | Engine Speed<br>(if upper range exceeded during<br>drive monitor is suspended)<br>Coolant temperature at start -<br>Ambient air Temperature -<br>Idle time ratio (idle / non idle) –<br>Idle time define as time when<br>(Pedal angle -<br>Vehicle speed -) | 520 rpm < nmot < 9000 rpm<br>-7 °C < ect1 < 60 °C<br>-7 °C < tumg < 60 °C<br>< 50 %<br><= 0 %<br><= 0 mph | Depends<br>upon<br>drive<br>cycle<br>time | 2 Drive<br>Cycles |
|                         |               |                                                     | In addition, if the modeled ECT1<br>value goes above a threshold for a<br>set period a check is made to see if<br>actual ECT 1 has exceeded the<br>diagnostic enablement threshold. If<br>not a thermostat fault flag is set.                                                           | 81.8 °C<br>125 s<br>< 80.3 °C |                                                                                                                                                                                                                                                             |                                                                                                           |                                           |                   |

KLDLTATKA - Characteristic line for delta temperature for thermostat open detection


| input x  | °C | -20.25 | 0  | 15   | 30 | 45   | 60  |
|----------|----|--------|----|------|----|------|-----|
| output w | O° | 60     | 45 | 33.8 | 24 | 14.3 | 9.8 |

## 12. Comprehensive Component Monitoring


#### 12.1.Intake Air Temperature Sensor Monitor

The V6 SC and V8SC engines have a twin airbox / airflow meter intake system feeding into a single throttle housing.

# Schematic



## 12.1.1. Super Charged Variants



For the supercharged variant there are three temperature measurements made these being post intercooler, pre throttle and post supercharger.

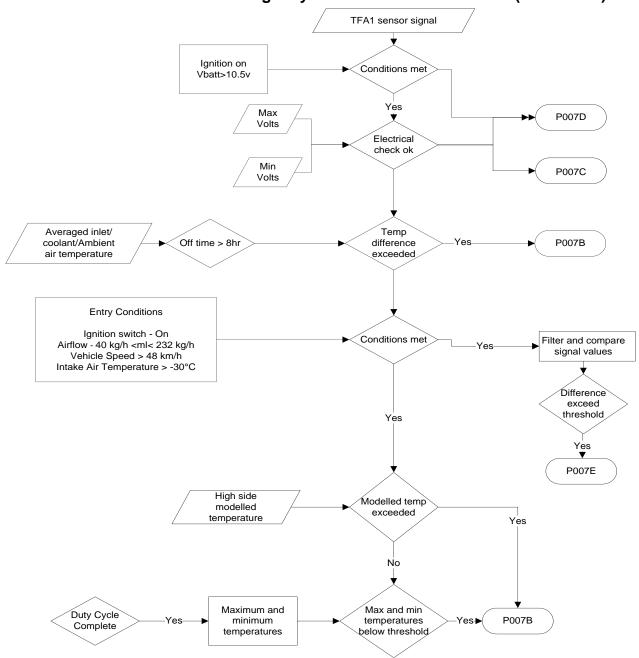
# 12.1.1.1. TMAP/TFA1 (Post intercooler) Intake Air Temperature Sensor Monitor

## 12.1.1.1.1. Fault Codes

P007D - Intake Air Temperature Sensor 1 Circuit High (Bank 1)
P007C - Intake Air Temperature Sensor 1 Circuit Low (Bank 1)
P007E - Intake air temperature sensor 1 Circuit (Bank 1): electrical check
P007B - Intake Air Temperature Sensor 1 Circuit Range/Performance (Bank 1)

# 12.1.1.1.2. Electrical Monitor

**P007D, P007C and P007E**. These monitors run continuously. The voltage output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded. Additionally, it tests for a loose connection of the temperature sensor by comparing the difference between the temperature sensor voltage and a low pass filtered value with a 2 second time constant (P007E). If a loose contact occurs, the signal will show a series of step changes between the sensor voltage and the open circuit voltage. Normally, this temperature does not change rapidly, so there should be only a small difference between the signal and the filtered signal. If this difference exceeds a threshold then a fault is declared.


#### 12.1.1.1.3. Rationality Monitor

**P007B**. High Side Check. A maximum air temperature model is formed using inputs from ambient air and engine coolant temperatures and the TFA1 signal is continuously compared to this. If the modeled intake air temperature is less than the actual intake air temperature for a given period then a high fault is declared.

**P007B**. Stuck Sensor. A stuck sensor is declared if the maximum and minimum temperatures are less than a threshold as measured over a sufficiently large duty cycle. A large duty cycle is defined if the number of operational phases with normally higher intake air temperature (High phase) and lower intake air temperature (Low phase) are encountered since vehicle start.

## 12.1.1.1.4. Cold Start Monitor

**P007B**. Range check at start. An average of the Intake temperatures / Coolant1 / Ambient air Temperature sensor values during an engine OFF period is calculated. If the particular sensor value minus the average value is greater than a sensor specific threshold for any period of time, then a fault is declared.





|                                         |               |                                                                  |                                                                   | Monitoring         |                                   |                         |               |              |
|-----------------------------------------|---------------|------------------------------------------------------------------|-------------------------------------------------------------------|--------------------|-----------------------------------|-------------------------|---------------|--------------|
| Component/System                        | Fault<br>Code | Malfunction Strategy Description                                 | Malfunction Criteria                                              | Threshold<br>Value | Secondary Parameters              | Enable Conditions       | Time<br>Req.  | MIL<br>illum |
| TFA1 – SC. Intake air                   |               |                                                                  |                                                                   |                    |                                   |                         |               |              |
| emperature sensor post<br>ntercooler    |               |                                                                  |                                                                   |                    |                                   |                         |               |              |
| Electrical check<br>high input TASREmax |               | Out of range check                                               | TFA1 voltage (-39.8 °C)                                           | > 4.9 v            | Engine started and running        |                         | 1 s           | 2 Driv       |
| low input TASREmin                      | P007C         | Out of range check                                               | TFA1 voltage (129.8 °C)                                           | < 0.15 v           | Battery voltage -                 | > 10.5 v                |               | Cycle        |
| (DCTFA                                  | )             |                                                                  | For                                                               | > 1 s              | Coolant Temp -                    | > 40 °C                 |               |              |
| TASREnp                                 | I P007E       | Test for a loose connector/                                      | Changes in temperature are                                        | > 0.32 v           | Air Mass Flow -                   | < 52 kg/h               |               |              |
|                                         |               | intermittent fault and compares a                                | normally not rapid. If the difference                             | for 1 s            | Vehicle Speed -                   | < 318.75 mph            |               |              |
|                                         |               | raw and filtered sensor reading.                                 | exceeds a threshold then a fault is declared.                     |                    | Engine temp at start -            | > - 25 °C               |               |              |
| Plausibility - High Check<br>TASRRmax   |               | Actual intake/charge air<br>temperature is continuously          | If the modeled temperature is greater than the actual temperature | See<br>KFTFA1MX    | Ignition switch -                 | On                      | 10 s          |              |
| (DPLTFA1                                | )             | compared against                                                 | for 5 seconds then declare a fault                                | (table)            | Airflow -                         | 52 kg/h < ml < 300 kg/h |               |              |
|                                         |               | modeled temperature                                              |                                                                   | 10 s               | Vehicle Speed -                   | >30 mph                 |               |              |
|                                         |               |                                                                  |                                                                   |                    | for                               | > 10 s                  |               |              |
| Plausibility - Stuck Check<br>TASRRnp   |               | The vehicle must complete a set number of high phases (condition | Sensor temperature at start is<br>compared to sensor temperature  | < 3 °C             | Ignition switch -                 | On                      | Depends       | 6            |
|                                         |               | for high intake air temperature) and                             | when fully warm. If the difference                                |                    | High phase                        | > 3                     | upon<br>drive |              |
|                                         |               | a set number of low phases<br>(condition for low intake air      | between the two is less than a<br>calibrateable threshold then    |                    | Air Mass Flow -                   | < 40 kg/h               | cycle         |              |
|                                         |               | temperature) to allow a judgment to                              |                                                                   |                    | Vehicle Speed -<br>Coolant Temp - | < 7 mph<br>> 60 °C      | time          |              |
|                                         |               | be made.                                                         |                                                                   |                    | Integrated mass flow -            | > 10 kg                 |               |              |
|                                         |               |                                                                  |                                                                   |                    | for                               | > 10 kg                 |               |              |
|                                         |               |                                                                  |                                                                   |                    | Low Phase                         | > 3                     |               |              |
|                                         |               |                                                                  |                                                                   |                    | Air Mass Flow -                   | 48 kg/h < ml < 352 kg/h |               |              |
|                                         |               |                                                                  |                                                                   |                    | Vehicle Speed -                   | > 25 mph                |               |              |
|                                         |               |                                                                  |                                                                   |                    | for                               | > 5 s                   |               |              |
| Range check TASRCSmax                   | 007B          | A comparison of intake air temp                                  | If the sensor value plus / minus the                              | > +/-20 °C         | Ignition switch -                 | On                      | 2 s           |              |
| At start TASRCSmin                      |               | TFA1 against the average of TFA1,                                | average value is greater                                          | for                | Battery voltage -                 | > 10.5 v                | 20            |              |
| (DOTMCS                                 |               | TFA2. TFA3 Coolant1 and Ambient                                  | than a calibrateable threshold for                                | > 2 s              | After engine off time             | > 28800 s               |               |              |
| (2011100)                               |               | Air sensor values at engine start                                | period then declare a fault                                       |                    |                                   | - 20000 0               |               |              |

| TFA1 Monitoring                                |               |                                  |                      |                    |                                                    |                                                                                                                                            |              |               |  |
|------------------------------------------------|---------------|----------------------------------|----------------------|--------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|--|
| Component/System                               | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters                               | Enable Conditions                                                                                                                          | Time<br>Req. | MIL<br>illum. |  |
| TFA1 – SC. Intake air                          |               |                                  |                      |                    |                                                    |                                                                                                                                            |              |               |  |
| temperature sensor post<br>intercooler (con't) |               |                                  |                      |                    |                                                    |                                                                                                                                            |              |               |  |
|                                                |               |                                  |                      |                    | Fault Codes that disable P007B<br>(Rmax) or (Rnpl) | P007D, P007C, P007E, P0116<br>(Pmax), P0126, P0116 (Pnpl),<br>P0116 (CSmax), P0116 (CSmin),<br>P0118, P0117, P0119, P0500,<br>P0501, P0500 |              |               |  |
|                                                |               |                                  |                      |                    |                                                    | P0113, P0112, P0114, P0072,<br>P0073, P007D, P007C, P007E,<br>P0118, P0117, P0119, P0500,<br>P0501                                         |              |               |  |

**KFTFA1MX** - high-side TFA1 maximum temperature threshold

|          |    | ×/  | 20 | 80  | 100 |
|----------|----|-----|----|-----|-----|
| input x  | °C | -30 | 40 | 91  | 115 |
| input y  | °C | 20  | 50 | 91  | 120 |
| output w | °C | 60  | 70 | 100 | 125 |

## 12.1.1.2. TFA2 (Pre-Throttle) Intake Air Temperature Sensor Monitor

## 12.1.1.2.1. Fault Codes

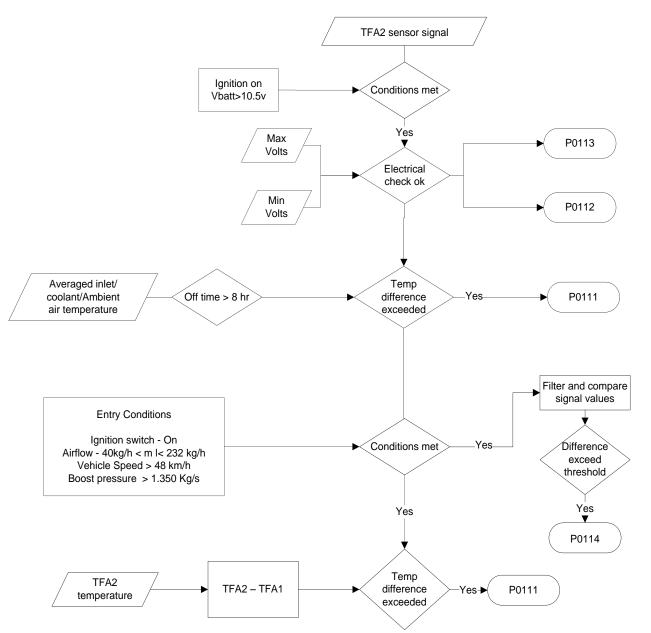
P0113 - Intake Air Temperature Sensor 1 Circuit High (Bank 1)

P0112 - Intake Air Temperature Sensor 1 Circuit Low (Bank 1)

P0114 - Intake air temperature sensor 1 Circuit (Bank 1): electrical check

P0111 - Intake Air Temperature Sensor 1 Circuit Range/Performance (Bank 1)

## 12.1.1.2.2. Electrical Monitor


**P0113, P0112 and P0114.** These monitors run continuously. The voltage output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded. Additionally, it tests for a loose connection of the temperature sensor by comparing the difference between the temperature sensor voltage and a low pass filtered value with a 2 second time constant (P0114). If a loose contact occurs, the signal will show a series of step changes between the sensor voltage and the open circuit voltage. Normally, this temperature does not change rapidly, so there should be only a small difference between the signal and the filtered signal. If this difference exceeds a threshold then a fault is declared.

# 12.1.1.2.3. Rationality Monitor

**P0111.** TFA2 is continuously subtracted from TFA1. If TFA2 – TFA1 is greater than a max or minimum threshold for period of time then a max or minimum fault is declare.

# 12.1.1.2.4. Cold Start Monitor

**P0111.** An average of the Intake temperatures / Coolant1 / Ambient air Temperature sensor values during an engine OFF period is calculated. If the particular sensor value minus the average value is greater than a sensor specific threshold for any period of time, then a fault is declared.



12.1.1.2.5. TFA2 Monitoring – System Flowchart and Table

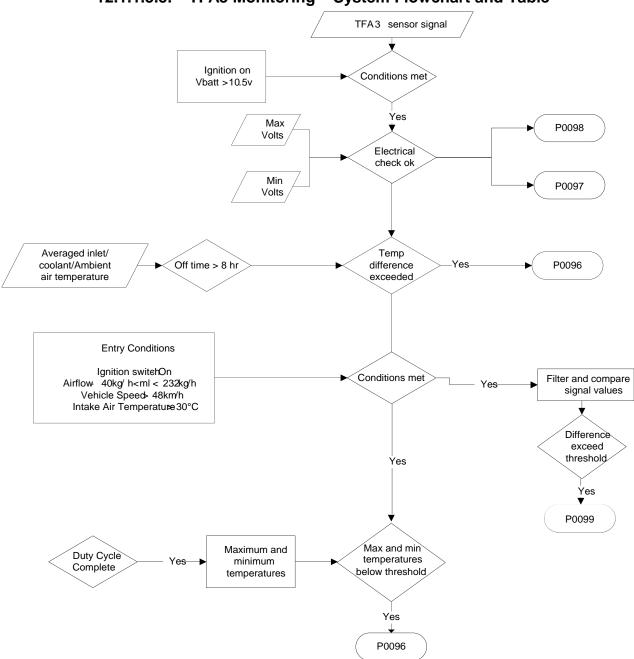
|                                                                |               |                                                                                                                                              | TFA2                                                                                                                                  | Monitoring                 |                                                                 |                                                                                                                                                                                                                                                               |              |               |
|----------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| Component/System                                               | Fault<br>Code | Malfunction Strategy Description                                                                                                             | Malfunction Criteria                                                                                                                  | Threshold<br>Value         | Secondary Parameters                                            | Enable Conditions                                                                                                                                                                                                                                             | Time<br>Req. | MIL<br>illum. |
| TFA2 – SC. Intake air<br>temperature sensor before<br>throttle |               |                                                                                                                                              |                                                                                                                                       |                            |                                                                 |                                                                                                                                                                                                                                                               |              |               |
| electrical check<br>high input <i>TAVDEmax</i>                 | P0113         | Out of range check                                                                                                                           | TFA2 voltage (-39.8 °C)                                                                                                               | > 4.9 v                    | Engine started and running                                      |                                                                                                                                                                                                                                                               | 0.2 s        | 2 Drive       |
| low input TAVDEmin<br>(DCTFA)                                  | P0112         | Out of range check                                                                                                                           | TFA2 voltage (140.2 °C)<br>For                                                                                                        | < 0.1 v<br>> 0.2 s         | Battery voltage -<br>Coolant Temp -                             | > 10.5 v<br>> 40 °C                                                                                                                                                                                                                                           |              | Cycles        |
| TAVDEnpl<br>(GGTFA)                                            | P0114         | Test for a loose connector/<br>intermittent fault and compares a<br>raw and filtered sensor reading.                                         | Changes in temperature are<br>normally not rapid. If the difference<br>exceeds a threshold then a fault is<br>declared.               | > 0.32v<br>for<br>> 1 s    | Air Mass Flow -<br>Vehicle Speed –<br>Engine temp at start      | < 52 kg/h<br>< 318.75 mph<br>> -24.75 °C                                                                                                                                                                                                                      |              |               |
| Plausibility - Max Check<br><i>TAVDRmax</i>                    | P0111         | TFA2 is continuously subtracted<br>from TFA1                                                                                                 | If TFA2 – TFA1 (positive) is greater<br>than a calibrateable threshold for<br>period of time then report a<br>fault                   | > 35.25 °C<br>for<br>5 s   | Ignition switch -<br>Airflow<br>Vehicle Speed<br>Boost pressure | On<br>48 kg/h < m l < 352 kg/h<br>>25 mph<br>> 1.10 Kg/s                                                                                                                                                                                                      | 5 s          |               |
| Plausibility - Min Check<br>TAVDRmin                           | P0111         | TFA2 is continuously subtracted<br>from TFA1                                                                                                 | If TFA2 – TFA1 (negative) is<br>greater than a calibrateable<br>threshold for period of time<br>then report a fault                   | > 85.50 °C<br>for<br>5 s   |                                                                 |                                                                                                                                                                                                                                                               |              |               |
| Range check TAVDCSmax<br>At start TAVDCSmin<br>(DOTMCS)        | P0111         | A comparison of intake air temp<br>TFA2 against the average of TFA1,<br>TFA2, TFA3 Coolant1 and Ambient<br>Air sensor values at engine start | If the sensor value plus / minus the<br>average value is greater<br>than a calibrateable threshold for<br>period then declare a fault | > +/-20 °C<br>for<br>> 2 s | Ignition switch -<br>Battery voltage -<br>After engine off time | On<br>> 10.5 v<br>> 28800 s                                                                                                                                                                                                                                   | 2 s          |               |
|                                                                |               |                                                                                                                                              |                                                                                                                                       |                            |                                                                 | P00BC, P00BF, P00BE, P010B,<br>P0101, P0236 (Bnpl), P0236<br>(Bsig), P0236 (Pmax), P0236<br>(Pmin), P0236 (Psig), P0236<br>(Bmax), P0236 (Bmin), P0103,<br>P0102, P0100, P010D, P010C,<br>P010A, P0238, P0237, P007D,<br>P007C, P007E, P0501, P0500,<br>P06A6 | _            |               |
|                                                                |               |                                                                                                                                              |                                                                                                                                       |                            | (CSmax) & (CSmin)                                               | P0113, P0112, P0114, P0072,<br>P0073, P007D, P007C, P007E,<br>P0118, P0117, P0119                                                                                                                                                                             |              |               |

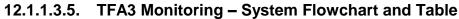
## 12.1.1.3. TFA3 (Supercharger out) Intake Air Temperature Sensor Monitor

12.1.1.3.1. Fault Codes

P0098 - Intake Air Temperature Sensor 2 Circuit High (Bank 1) P0097 - Intake Air Temperature Sensor 2 Circuit Low (Bank 1) P0099 - Intake Air Temperature Sensor 2 Circuit Intermittent/Erratic (Bank 1) P0096 - Intake Air Temperature Sensor 2 Circuit Range/Performance (Bank 1)

# 12.1.1.3.2. Electrical Monitor


**P0098, P0097 and P0099**. These monitors run continuously. The voltage output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded. Additionally, it tests for a loose connection of the temperature sensor by comparing the difference between the temperature sensor voltage and a low pass filtered value with a 2 second time constant (P0099). If a loose contact occurs, the signal will show a series of step changes between the sensor voltage and the open circuit voltage. Normally, this temperature does not change rapidly, so there should be only a small difference between the signal and the filtered signal. If this difference exceeds a threshold then a fault is declared.


# 12.1.1.3.3. Rationality Monitor

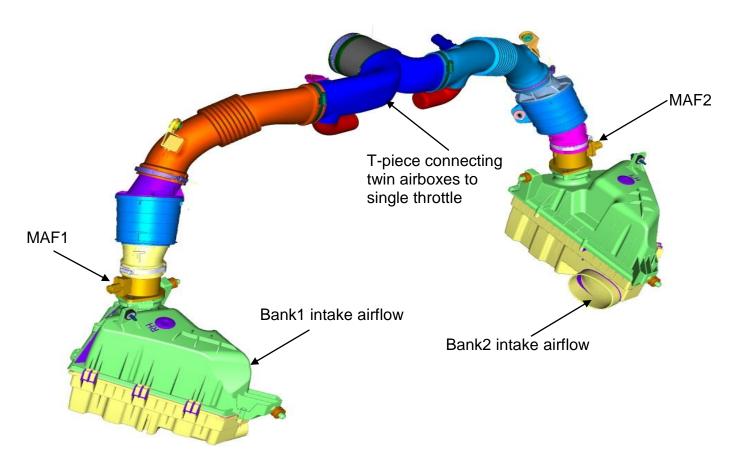
**P0096.** A stuck sensor is declared if the maximum and minimum temperatures are less than a threshold as measured over a sufficiently large duty cycle. A large duty cycle is achieved if the number of operational phases with normally higher intake air temperature (High phase) and lower intake air temperature (Low phase) are encountered since vehicle start.

# 12.1.1.3.4. Cold Start Monitor

**P0096.** An average of the Intake temperatures / Coolant1 / Ambient air Temperature sensor values during an engine OFF period is calculated. If the particular sensor value minus the average value is greater than a sensor specific threshold for any period of time, then a fault is declared.






| TFA3 Monitoring                                                   |               |                                                                                                                                                                                                                               |                                                                                                                                                                                             |                            |                                                                                                                                                                                    |                                                                                                                         |                                           |               |
|-------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------|
| Component/System                                                  | Fault<br>Code | Malfunction Strategy Description                                                                                                                                                                                              | Malfunction Criteria                                                                                                                                                                        | Threshold<br>Value         | Secondary Parameters                                                                                                                                                               | Enable Conditions                                                                                                       | Time<br>Req.                              | MIL<br>illum. |
| TFA3 – SC. Intake air<br>temperature sensor post<br>supercharger. |               |                                                                                                                                                                                                                               |                                                                                                                                                                                             |                            |                                                                                                                                                                                    |                                                                                                                         |                                           |               |
| electrical check<br>high input TAVLLKELECmax                      | P0098         | Out of range check                                                                                                                                                                                                            | TFA3 voltage (-39.8 °C)                                                                                                                                                                     | > 4.96 v                   | Engine started and running                                                                                                                                                         |                                                                                                                         | 0.2 s                                     | 2 Drive       |
| low input TAVLLKELECmin<br>(DCTFA3)                               | P0097         | Out of range check                                                                                                                                                                                                            | TFA3 voltage (199 °C)<br>For                                                                                                                                                                | < 0.05 v<br>> 0.2 s        | Battery voltage -<br>Coolant Temp -                                                                                                                                                | > 10.5 v<br>> 40 °C                                                                                                     |                                           | Cycles        |
| TAVLLKELECnpl                                                     | P0099         | Test for a loose connector/<br>intermittent fault and compares a<br>raw and filtered sensor reading.                                                                                                                          | Changes in temperature are<br>normally not rapid. If the difference<br>exceeds a threshold then a fault is<br>declared.                                                                     | > 0.32 v<br>for<br>1 s     | Air Mass Flow -<br>Vehicle Speed -<br>Engine temp at start                                                                                                                         | < 52 kg/h<br>< 318.75 mph<br>> -24.75 °C                                                                                | 2 s                                       |               |
| Plausibility - Stuck Check<br>TAVLLKPLAUSnpl                      |               | The vehicle must complete a set<br>number of high phases (condition<br>for high intake air temperature) and<br>a set number of low phases<br>(condition for low intake air<br>temperature) to allow a judgment to<br>be made. | Sensor temperature at start is<br>compared to sensor temperature<br>when fully warm. If the difference<br>between the two is less than a<br>calibrateable threshold then<br>declare a fault | < 1.50 °C                  | Ignition switch -<br>High phase<br>Air Mass Flow -<br>Vehicle Speed -<br>Coolant Temp -<br>Integrated mass flow -<br>for<br>Low Phase<br>Air Mass Flow -<br>Vehicle Speed -<br>for | On<br>> 3<br>< 40 kg/h<br>< 7 mph<br>> 60 °C<br>> 10 kg<br>> 5 s<br>> 3<br>48 kg/h < ml < 352 kg/h<br>> 25 mph<br>> 5 s | Depends<br>upon<br>drive<br>cycle<br>time |               |
| Range check at start<br>TAVLLKCOLDSTRTmax<br>TAVLLKCOLDSTRTmin    | P0096         | A comparison of intake air temp<br>TFA3 against the average of TFA1,<br>TFA2, TFA3 Coolant1 and Ambient<br>Air sensor values at engine start                                                                                  | If the sensor value plus / minus the<br>average value is greater<br>than a calibrateable threshold for<br>period then declare a fault                                                       | > +/-20 °C<br>for<br>> 2 s | Ignition switch -<br>Battery voltage -<br>After engine off time                                                                                                                    | On<br>> 10.5 v<br>> 28800s                                                                                              | 2 s                                       |               |

#### **12.2.Mass Airflow Sensor Monitors**

## 12.2.1. Fault Codes

- P0100 Mass or Volume Air Flow Sensor, A, Circuit
- P115D Mass Air Flow Circuit Offset
- P0101 Mass or Volume Air Flow Sensor, A, Circuit Range/Performance
- P010B Mass or Volume Air Flow Sensor, B, Circuit Range/Performance
- P00BD Mass or Volume Air Flow A Circuit Range/Performance -Air Flow Too High
- P00BC Mass or Volume Air Flow A Circuit Range/Performance Air Flow Too Low
- P00BF Mass or Volume Air Flow B Circuit Range/Performance -Air Flow Too High
- P00BE Mass or Volume Air Flow B Circuit Range/Performance Air Flow Too Low

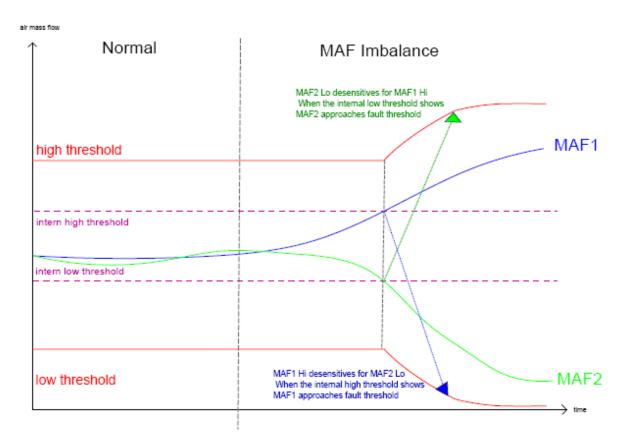
## Schematic

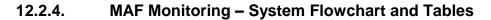


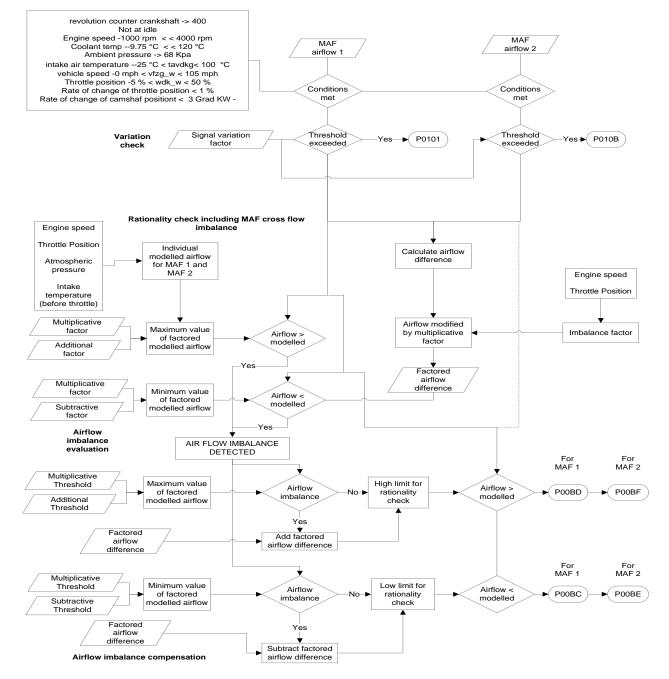
As previously stated in the inlet temperature section, The V6SC and V8SC engines have a twin airbox / airflow meter intake system feeding into a single throttle housing.

### 12.2.2. Electrical check

**P0100**. These monitors run continuously. Electrical continuity problems with the two air flow meters are reported using standard powerstage diagnostics.


# 12.2.3. Cross Flow Compensation Range and Plausibility Check


**P00BD, P00BC, P00BF and P00BE** As the engine uses two intakes, each with a separate mass airflow sensor and a single throttle, then any of the air for each of the eight cylinders can pass through either of the throttles. This means that if there is a difference in air pressure between the two intakes, then there will be a difference in air flow through each of the intakes. This is most likely to occur due to side winds and in extreme cases can result in air flowing out through one of the intake ducts. The monitor is able to identify this flow imbalance between the two sides of the intake system, so that the limits maybe adjusted in order to remove any tendency for false diagnosis of a sensor.


Flow imbalance is determined by comparing each MAF sensor reading with the estimated value. If it is lower than a predetermined proportion of the estimated value, then the high fault threshold for the other MAF sensor is increased by an amount that depends on the difference between the two MAF sensor readings. If it is higher than a pre-determined proportion of the estimated value, then the low fault threshold for the other MAF sensor is decreased by an amount that depends on the difference between the two MAF sensor readings.

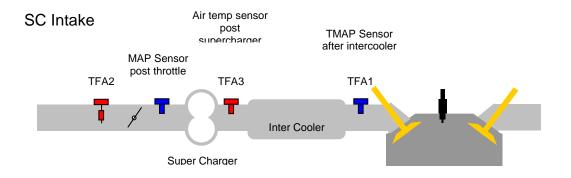
In cases of imbalance, both sensor readings move equally in opposite directions, the appropriate fault thresholds will be adjusted and no false fault detection will occur. If a single sensor is faulty, then it can only alter a fault threshold for the opposing sensor, its monitor is unaffected and will therefore flag a fault.

The flow chart below and the following graphs explain the operation of this diagnostic.








Jaguar F-Type

| Component/System               | Fault                  | Malfunction Strategy | Malfunction Criteria                                                                    | Threshold           | Secondary Parameters                                               |                                      | Time  | MIL             |
|--------------------------------|------------------------|----------------------|-----------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|--------------------------------------|-------|-----------------|
| Component/System               | Code                   | Description          | Manufiction Criteria                                                                    | Value               | Secondary Farameters                                               |                                      | Req.  | illum           |
| ass Airflow Meter              |                        |                      |                                                                                         |                     |                                                                    |                                      |       |                 |
|                                | ax P0103<br>ax P010D   | Out of range check   | MAF PWM signal                                                                          | > 2100.00<br>µs     | Ignition switch -<br>Engine speed -                                | On<br>Cranking                       | 0.2 s | 2 Driv<br>Cycle |
|                                | nin P0102<br>nin P010C | Out of range check   | MAF PWM signal                                                                          | < 66 µs             | Battery voltage -                                                  | > 10.5 v                             |       | Cycle           |
|                                |                        |                      | for                                                                                     | 0.2 s               |                                                                    |                                      |       |                 |
|                                | ig P0100               | Signal check         | No PWM signal detected                                                                  |                     |                                                                    |                                      |       |                 |
| HFM2E                          | ig P010A               |                      |                                                                                         |                     |                                                                    |                                      |       |                 |
| Rationality che                |                        |                      |                                                                                         |                     |                                                                    |                                      |       |                 |
| HFM1PLM                        |                        | 5                    | Measured mass airflow for either                                                        | max of              | Engine revolutions since start -                                   | > 400                                | 10 s  |                 |
| HFM1PLN                        |                        |                      | sensor varies from a modeled<br>airflow by the maximum of an                            | + 12 kg/h           | Not at idle                                                        | 1000                                 |       |                 |
| HFM2PLM                        |                        |                      | additional/subtractive or                                                               | or                  | Engine speed -                                                     | 1000 rpm < nmot < 4000 rpm           |       |                 |
| HFM2PLN                        | IN POOBE               | and temperature.     | multiplicative thresholds.                                                              | x 1.3               | Coolant temp -                                                     | -9.75 °C < ect1 < 120 °C             |       |                 |
|                                |                        |                      |                                                                                         |                     | Ambient pressure -                                                 | > 68 KPa                             |       |                 |
|                                |                        |                      |                                                                                         | min of              | intake air temperature -                                           | -25 °C < tans < 100 °C               |       |                 |
|                                |                        |                      |                                                                                         | - 12 kg/h           | vehicle speed -                                                    | 0 mph < vfzg_w < 105 mph             |       |                 |
|                                |                        |                      |                                                                                         | or                  | Throttle position -                                                | 5 % < wdk_w < 50 %                   |       |                 |
|                                |                        |                      |                                                                                         | x 0.7               | Rate of change of throttle position                                | < 1 %                                |       |                 |
|                                |                        |                      | la addition due to MAC imbalance                                                        |                     | Rate of change of camshaft                                         | < 3 °CrS                             |       |                 |
|                                |                        |                      | In addition, due to MAF imbalance, if the airflow difference is greater                 | max of              | position -                                                         |                                      |       |                 |
|                                |                        |                      | than the maximum of an                                                                  | 3 kg/h              |                                                                    |                                      |       |                 |
|                                |                        |                      | additional/subtractive or                                                               | or                  |                                                                    |                                      |       |                 |
|                                |                        |                      | multiplicative factors the imbalance<br>airflow is added/subtracted to the<br>threshold | x 1.05              |                                                                    |                                      |       |                 |
|                                |                        |                      | threshold                                                                               | min of              |                                                                    |                                      |       |                 |
|                                |                        |                      |                                                                                         | 3 kg/h              |                                                                    |                                      |       |                 |
|                                |                        |                      |                                                                                         | or                  |                                                                    |                                      |       |                 |
|                                |                        |                      |                                                                                         | x 0.95              |                                                                    |                                      |       |                 |
|                                |                        |                      | Fault conditions have to be present for time period of                                  | 10 s                |                                                                    |                                      |       |                 |
| Variation CHeckHFMV2n<br>HFMVn | ax P010B<br>ax P0101   |                      | If the actual airflow changes by a<br>non plausible factor<br>then a fault is declared  | > 2 Kg/h in<br>10ms | Throttle angle and engine speed<br>Throttle angle and engine speed | > 15 % > 1500 rpm<br>< 8 % < 800 rpm |       |                 |

|                  |               |                                  | Mass Airflow Me      | ter Sensor         | Monitoring                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |               |
|------------------|---------------|----------------------------------|----------------------|--------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| Component/System | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters           | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time<br>Req. | MIL<br>illum. |
|                  |               |                                  |                      |                    | Fault Codes that disable P0101 | P2564, P132B (npl), P003A (max),<br>P003A (min), P132B (sig), P0111<br>(Rmax), P0111 (Rmin), P0113,<br>P0112, P0114, P0111 (CSmax),<br>P0111 (CSmin), P012B, P012B,<br>P012B, P2282, P012B, P012B,<br>P012B, P2282, P012B, P012B,<br>P012B, P2229, P2228, P2227<br>(sig), P0069, P012B (Bmax),<br>P2176 (Unpl), P0103, P0102,<br>P0100, P010D, P010C, P010A,<br>P0236 (Bnpl), P0236 (Bsig), P0236<br>(Pmax), P0236 (Pmin), P0236<br>(Psig), P0236 (Bmax), P0236<br>(Bmin), P0238, P0237, P007B<br>(max), P007B (npl), P007B<br>(CSmax), P007B (CSmin), P007D,<br>P007C, P007E, P2234, P2231,<br>P2629, P2626, P2197, P2198,<br>P0173, P2195, P2196, P0170,<br>P0193, P0192, P0153, P0133,<br>P0155, P00D3, P00D3, P0052,<br>P0051, P0050, P0032, P0031,<br>P0030, P0135, P00D1 (npl),<br>P00D1 (sig), P2240 (max), P2240<br>(npl), P2240 (sig), P2237 (max),<br>P2237 (npl), P2237 (sig), P0152,<br>P0151, P0132, P0134, P064E<br>(max), P064E (min), P064E (npl),<br>P064E (sig), P044D (max), P064E<br>(max), P064D (npl), P064D (sig<br>P0300, P0236, P2135, P000D,<br>P0024, P2095, P0023, P2091,<br>P0013, P000B, P0014, P000C,<br>P0024, P2095, P0023, P2091,<br>P0013, P000B, P0014, P000C,<br>P0021, P2093, P0020, P2089,<br>P0010, P000A, P0011, P064B,<br>P2094, P2090, P2092, P2088,<br>P0040, P0336, P0335, P0459,<br>P0458, P0444, P0016, P0016,<br>P2094, P2090, P2092, P2088,<br>P0040, P036, P035, P0017, P0017,<br>P0019, P0019, P0500, P0501 |              |               |
|                  |               |                                  |                      |                    |                                | P2135, P0335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |               |

### 12.3.Intake Pressure Sensor Monitors

#### 12.3.1. Super Charged Variants



## 12.3.1.1. TMAP Pressure Monitor

## 12.3.1.1.1. Fault Codes

P0238 - Turbocharger/Supercharger Boost Sensor "A" Circuit High P0237 - Turbocharger/Supercharger Boost Sensor "A" Circuit Low P0236 - Turbocharger/Supercharger Boost Sensor "A" Circuit Range/Performance

## 12.3.1.1.2. Electrical Monitor

**P0238 and P0237**. The voltage output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded.

## 12.3.1.1.3. Range Check, Rationality and Signal Monitor

**P0236**. The range check compares the pressure readings with an upper and lower threshold and a suitable code set if exceeded.

**P0236**. Rationality check. The manifold pressure sensor monitor compares the measured manifold pressure with an estimated pressure which is calculated by a model. The model that determines the estimated pressure uses look-up tables which have engine speed and throttle angle as inputs for deriving its model base and compensation values for intake air temperature, atmospheric pressure and VVT, from which the estimated pressure is calculated. If the difference between the actual and estimated values is greater or less than a threshold then a fault is declared. The monitors have the ability to make a normal judgment followed by a failed judgment or vice versa, as the monitors run continuously whilst the entry conditions are met.

**P0236.** Signal variation check. The maximum and minimum sensor readings are cyclically updated. If operating conditions are encountered that mean the difference between maximum and minimum should be sufficiently large but they are less than a threshold then the signal variation check has failed. A check is made to see if a sensor is frozen. If a sensor is frozen, it is not faulty but temporarily invalid and during the time in which it is detected as frozen, the model-based diagnosis is inhibited. A frozen sensor is suspected if at start, at sufficiently low ambient temperatures, a comparison of maximum and minimum manifold pressures does not exceed a threshold during the start process. The diagnostics are restored one engine temperatures have exceeded a threshold for a given period.

**P0236** Signal check at start. At start, the manifold pressure sensor reading is compared to an average of the MAP/TMAP/Ambient pressure sensor values if a defined soak period has been completed. If the difference greater than a failure threshold then a fault is declared. In addition a check is made to ensure that during certain atmospheric conditions that throttle icing does not cause false diagnostic reporting.

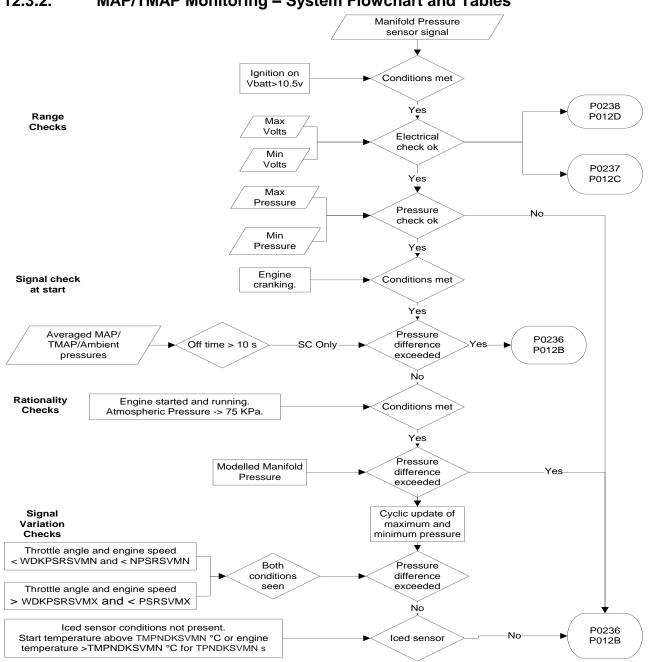
## **12.3.1.2. MAP Pressure Monitor – Pressure Downstream of Throttle**

# 12.3.1.2.1. Fault Codes

P012D - Turbocharger/Supercharger Inlet Pressure Sensor Circuit High P012C - Turbocharger/Supercharger Inlet Pressure Sensor Circuit Low P012B - Turbocharger/Supercharger Inlet Pressure Sensor Circuit Range/Performance

# 12.3.1.2.2. Electrical Monitor

**P012D and P012C**. The voltage output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded.


## 12.3.1.2.3. Range Check, Rationality and Signal Monitor

**P012B**. The range check compares the pressure readings with an upper and lower threshold and a suitable code set if exceeded.

**P012B**. Rationality check. The manifold pressure sensor monitor compares the measured manifold pressure with an estimated pressure which is calculated by a model. The model that determines the estimated pressure uses look-up tables which have engine speed and throttle angle as inputs for deriving its model base and compensation values for intake air temperature, atmospheric pressure and VVT, from which the estimated pressure is calculated. If the difference between the actual and estimated values is greater or less than a threshold then a fault is declared. The monitors have the ability to make a normal judgment followed by a failed judgment or vice versa, as the monitors run continuously whilst the entry conditions are met.

**P012B**. Signal variation check. The maximum and minimum sensor readings are cyclically updated. If operating conditions are encountered that mean the difference between maximum and minimum should be sufficiently large but they are less than a threshold then the signal variation check has failed. A check is made to see if a sensor is frozen. If a sensor is frozen, it is not faulty but temporarily invalid and during the time in which it is detected as frozen, the model-based diagnosis is inhibited. A frozen sensor is suspected if at start, at sufficiently low ambient temperatures, a comparison of maximum and minimum manifold pressures does not exceed a threshold during the start process. The diagnostics are restored one engine temperatures have exceeded a threshold for a given period.

**P012B.** Signal check at start. At start, the manifold pressure sensor reading is compared to an average of the MAP/TMAP/Ambient pressure sensor values if a defined soak period has been completed. If the difference greater than a failure threshold then a fault is declared. In addition a check is made to ensure that during certain atmospheric conditions that throttle icing does not cause false diagnostic reporting.



#### 12.3.2. **MAP/TMAP Monitoring – System Flowchart and Tables**

|                                                                 |               |                                                                                                                                                                    | TMAP Pressure                                                                                                                                                                                      | Sensor N                        | Ionitoring                                                                                                                                                       |                                                                                      |              |                   |
|-----------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                                                | Fault<br>Code | Malfunction Strategy Description                                                                                                                                   | Malfunction Criteria                                                                                                                                                                               | Threshold<br>Value              | Secondary Parameters                                                                                                                                             | Enable Conditions                                                                    | Time<br>Req. | MIL<br>illum.     |
| TMAP Pressure Sensor (SC<br>engine only – Manifold<br>pressure) |               |                                                                                                                                                                    |                                                                                                                                                                                                    |                                 |                                                                                                                                                                  |                                                                                      |              |                   |
| TMAP high input PSREmax<br>TMAP low input PSREmin<br>(GGDSS)    |               | Out of range check<br>Out of range check                                                                                                                           | MAP voltage (310 kPa)<br>MAP voltage (6.8 kPa)<br>for                                                                                                                                              | > 4.80 v<br>< 0.20 v<br>> 0.2 s | Ignition switch -<br>Battery voltage -                                                                                                                           | On<br>> 10.5 v                                                                       | 0.2 s        | 2 Drive<br>Cycles |
| PSRBmax<br>PSRBmin<br>(DPLPSR)                                  |               | Out of range check<br>Out of range check                                                                                                                           | MAP pressure<br>MAP pressure<br>for                                                                                                                                                                | > 220 KPa<br>< 50 KPa<br>> 2 s  | Engine speed -<br>Not in fuel cut<br>Throttle position -                                                                                                         | 420 rpm < nmot < 3500 rpm<br>14 %                                                    | 2 s          |                   |
| PSRBmax<br>(BGDSAD)                                             | P0236         | Out of range check at start                                                                                                                                        | MAP Pressure at start                                                                                                                                                                              | > 140 KPa                       | Within 2 revolutions of 'engine cranking' set and engine speed -                                                                                                 | < 400rpm                                                                             | 0.1 s        |                   |
| Plausibility<br>PSRPmax/min                                     | P0236         | Modeled manifold pressure is<br>continuously compared against<br>the actual manifold pressure                                                                      | If the difference between<br>modeled manifold pressure is<br>greater than the actual manifold<br>pressure for a period of time<br>then report a failure (for both<br>positive and negative error)  | > 28 KPa<br>for<br>4 s          | Engine speed -<br>Not in fuel cut<br>Throttle position -                                                                                                         | 420 rpm < nmot < 3500 rpm<br>14 %                                                    | 4 s          |                   |
| PSRBsig<br>PSRBnpl                                              |               | Pressure check at start                                                                                                                                            | Averages MAP/TMAP/Ambient<br>pressure sensor values at start after<br>a defined soak period and compares<br>them to a threshold.                                                                   | > +/-6 KPa                      | Ignition switch -<br>Battery voltage -<br>Engine speed -<br>Soak time -                                                                                          | On<br>> 10.5 v<br>Cranking<br>5 s                                                    | 5 s          |                   |
| MAP leak check plausibility<br><i>LZSRnpl</i><br>(BGADAP)       | P2282         | Air Leak Between Throttle Body and<br>Intake Valve. Continuously monitor<br>the<br>difference between modeled<br>manifold pressure and actual<br>manifold pressure | If the difference between modeled<br>manifold pressure and actual<br>manifold pressure is greater than<br>a calibrateable threshold for a<br>calibrateable period of time then<br>declare a fault. | ><br>for<br>2 s                 | Air Mass Flow -<br>manifold pressure/Pressure<br>upstream of throttle<br>Time after engine start<br>Engine speed –<br>No purge diagnostic running<br>for > 5 sec | 5 kg/h < ml < 30 kg/h<br>0.2 < vpsrvd < 0.58<br>> 5 sec<br>520 rpm < nmot < 6520 rpm | 2 s          |                   |
|                                                                 |               |                                                                                                                                                                    |                                                                                                                                                                                                    |                                 | No electrical faults with MAP or<br>Throttle sensors                                                                                                             |                                                                                      |              |                   |

|                                                                         |               |                                  | TMAP Pressu          | re Sensor M        | onitoring                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |
|-------------------------------------------------------------------------|---------------|----------------------------------|----------------------|--------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| Component/System                                                        | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters                                               | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time<br>Req. | MIL |
| TMAP Pressure Sensor (SC<br>engine only – Manifold<br>pressure) (con't) |               |                                  |                      |                    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |     |
|                                                                         |               |                                  |                      |                    | Fault Codes that disable P0237<br>or P0238                         | P06A6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |     |
|                                                                         |               |                                  |                      |                    | Fault Codes that disable P0236<br>(Bmax), (Bmin), (Bnpl) or (Bsig) | P0039, P0034, P0033, P2565,<br>P2564, P132B (npl), P003A (max),<br>P003A (min), P132B (sig), P0238,<br>P0237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |     |
|                                                                         |               |                                  |                      |                    | Fault Codes that disable P0236<br>(Pmax), (Pmin) or (Psig)         | P0111 (Rmax), P0111 (Rmin),<br>P0113, P0112, P0114, P0111<br>(CSmax), P0111 (CSmin), P2229,<br>P2228, P2227, P0069, P0039,<br>P0034, P0033, P2565, P2564,<br>P132B (npl), P003A (max), P003A<br>(min), P132B (sig), P0236 (Bnpl),<br>P0236 (Bsig), P0236 (Pmax),<br>P0236 (Pmin), P2176 (Unpl),<br>P0238, P0237, P007B (max),<br>P007B (npl), P007B (CSmax),<br>P007B (CSmin), P007D, P007C,<br>P007E, P0118, P0117, P2135,<br>P0116 (Pmax), P0126, P0116<br>(Pnpl), P0116 (CSmax), P0116<br>(CSmin), P0119, P2095, P0023,<br>P2089, P0010, P000D, P0024,<br>P000B, P0014, P2135, P000C,<br>P0021, P000A, P0011, P2094,<br>P2090, P2092, P2088, |              |     |

|                                                                              |               |                                                                                               | MAP Pressure                                                                                                                                                                                      | Sensor M               | onitoring                                                                                                                                                                  |                                                                                                                                                                                |              |               |
|------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| Component/System                                                             | Fault<br>Code | Malfunction Strategy Description                                                              | Malfunction Criteria                                                                                                                                                                              | Threshold<br>Value     | Secondary Parameters                                                                                                                                                       | Enable Conditions                                                                                                                                                              | Time<br>Req. | MIL<br>illum. |
| MAP Pressure Sensor (SC<br>engine only – pressure<br>downstream of throttle) |               |                                                                                               |                                                                                                                                                                                                   |                        |                                                                                                                                                                            |                                                                                                                                                                                |              |               |
| MAP high input PNDKEmax                                                      | P012D         | Out of range check                                                                            | MAP voltage (257 kPa)                                                                                                                                                                             | > 4.87 v               | Ignition switch -                                                                                                                                                          | On                                                                                                                                                                             | 0.2 s        | 2 Drive       |
| MAP low input <i>PNDKEmin</i><br>(GGPNDK)                                    | P012C         | Out of range check                                                                            | MAP voltage (10 kPa)<br>for                                                                                                                                                                       | < 0.25 v<br>> 0.2 s    | Battery voltage -                                                                                                                                                          | > 10.5 v                                                                                                                                                                       |              | Cycles        |
| PNDKBmax                                                                     | P012B         | Out of range check                                                                            | MAP pressure                                                                                                                                                                                      | > 110 KPa              | Engine speed -                                                                                                                                                             | 420 rpm < nmot < 4500 rpm                                                                                                                                                      |              |               |
| PNDKBmin                                                                     | P012B         | Out of range check                                                                            | MAP pressure                                                                                                                                                                                      | < 11 KPa               | Not in fuel cut                                                                                                                                                            |                                                                                                                                                                                |              |               |
| (DPLPNDK)                                                                    |               | _                                                                                             | for                                                                                                                                                                                               | > 2 s                  | Throttle position -                                                                                                                                                        | 9 %                                                                                                                                                                            |              |               |
| PNDKBmax<br>(BGDSAD)                                                         | P012B         | Out of range check at start                                                                   | MAP Pressure at start                                                                                                                                                                             | > 140 KPa              | Within 2 revolutions of 'engine cranking' set and engine speed -                                                                                                           | < 400rpm                                                                                                                                                                       | 0.1 s        |               |
| Plausibility<br>PNDKPmax/min                                                 | P012B         | Modeled manifold pressure is<br>continuously compared against<br>the actual manifold pressure | If the difference between<br>modeled manifold pressure is<br>greater than the actual manifold<br>pressure for a period of time<br>then report a failure (for both<br>positive and negative error) | > 25 KPa<br>for<br>4 s | Engine speed -<br>Not in fuel cut<br>Throttle position -                                                                                                                   | 420 rpm < nmot < 4500 rpm<br>9 %                                                                                                                                               | 4 s          |               |
| PNDKPsig                                                                     | P012B         | Signal variation check - stuck<br>sensor                                                      | Comparison of the signal is made<br>over a time period and if it is<br>expected that the signal should<br>change and does not exceed a<br>threshold a fault is set                                | < 5 KPa                | Ignition switch -<br>Battery voltage -<br>Coolant temperature at start -<br>Not in fuel cut<br>Throttle angle and engine speed<br>Throttle angle and engine speed<br>for - | On<br>> 10.5 v<br>> -8.25 °C<br>< 5 % and < 1000 rpm<br>> 10 % and < 1500 rpm<br>1 s                                                                                           | 1s           |               |
| PNDKBsig<br>PNDKBnpl                                                         | P012B         | Pressure check at start                                                                       | Averages MAP/TMAP/Ambient<br>pressure sensor values at start after<br>a defined soak period and<br>compares them to a threshold.                                                                  | > +/- 6 KPa            | Ignition switch -<br>Battery voltage -<br>Engine speed -<br>Soak time -                                                                                                    | On<br>> 10.5 v<br>Cranking<br>5 s                                                                                                                                              | 0.2 s        |               |
|                                                                              |               |                                                                                               |                                                                                                                                                                                                   |                        | Fault Codes that disable P012C<br>or P012D                                                                                                                                 | PU6A6                                                                                                                                                                          |              |               |
|                                                                              |               |                                                                                               |                                                                                                                                                                                                   |                        | (Bmax), (Bmin), (Bnpl) or (Bsig)                                                                                                                                           | P012D, P012C, P0039, P0034, P0033,<br>P2565, P2564, P132B (npl), P003A<br>(max), P003A (min), P132B (sig)                                                                      |              |               |
|                                                                              |               |                                                                                               |                                                                                                                                                                                                   |                        | Fault Codes that disable P012B<br>(Pmax), (Pmin) or (Psig)                                                                                                                 | P012B (Bmax), P012B (Bmin), P012B<br>(Bnpl), P012B (Bsig), P012D, P012C,<br>P0039, P0034, P0033, P2565, P2564,<br>P132B (npl), P003A (max), P003A<br>(min), P132B (sig), P2135 |              |               |

|                                                     |               |                                                                                                                                                        | Barometric Pressu                                                                                                                                                                                                                                | re Sensor           | Monitoring                                                              |                                   |              |                   |
|-----------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------|-----------------------------------|--------------|-------------------|
| Component/System                                    | Fault<br>Code | Malfunction Strategy Description                                                                                                                       | Malfunction Criteria                                                                                                                                                                                                                             | Threshold<br>Value  | Secondary Parameters                                                    | Enable Conditions                 | Time<br>Req. | MIL<br>illum.     |
| Barometric Pressure<br>Sensor                       |               |                                                                                                                                                        |                                                                                                                                                                                                                                                  |                     |                                                                         |                                   |              |                   |
| PURmax                                              | P2229         | Out of range check                                                                                                                                     | Ambient Pressure                                                                                                                                                                                                                                 | >114 KPa            | Ignition switch -                                                       | On                                | 2 s          | 2 Drive<br>Cycles |
| PURmin<br>(DPLPU)                                   |               | Out of range check                                                                                                                                     | Ambient Pressure<br>For                                                                                                                                                                                                                          | < 50 KPa<br>>2 s    | Battery voltage -                                                       | > 10.5 v                          |              | .,                |
| Signal <i>PURsig</i><br>Plausibility <i>PURnp</i> l |               | Atmospheric pressure will only<br>change at a slow rate of change.<br>The monitor looks for any irregular<br>changes through continuous<br>measurement | A filtered value of pressure is<br>compared with its self over a time<br>step differential. The difference is<br>compared an upper and lower<br>tolerance.                                                                                       | +/-1.5 KPa          | Ignition switch -<br>Battery voltage -                                  | On<br>> 10.5 v                    | 2 s          |                   |
|                                                     |               | Last drive check and model<br>comparison check                                                                                                         | Last drive check. Compares a stored<br>last value from the previous drive<br>cycle with the current value 5 second<br>after start. If the difference exceeds<br>the threshold a fault suspicion is<br>declared.                                  | +/-1.5 KPa          |                                                                         |                                   |              |                   |
|                                                     |               |                                                                                                                                                        | If a fault is suspected from the<br>Last drive check then maximum and<br>minimum modeled values based<br>the manifold pressure sensor are<br>compared with the ambient pressure<br>value. A fault is confirmed if theses<br>values are exceeded. | < 5 kpa<br>> 10 KPa |                                                                         |                                   | 0.2 s        | -                 |
| PURnpl<br>PURsig                                    |               | Pressure check at start                                                                                                                                | Averages MAP/TMAP/Ambient<br>pressure sensor values at start after a<br>defined soak period and compares<br>them to a threshold.                                                                                                                 | > +/- 2.5 KPa       | Ignition switch -<br>Battery voltage -<br>Engine speed -<br>Soak time - | On<br>> 10.5 v<br>Cranking<br>5 s | 5 s          |                   |
|                                                     |               |                                                                                                                                                        |                                                                                                                                                                                                                                                  |                     | Fault Codes that disable P0069,                                         |                                   |              |                   |

### 12.4.Coolant Temperature Sensor Monitor ECT 1

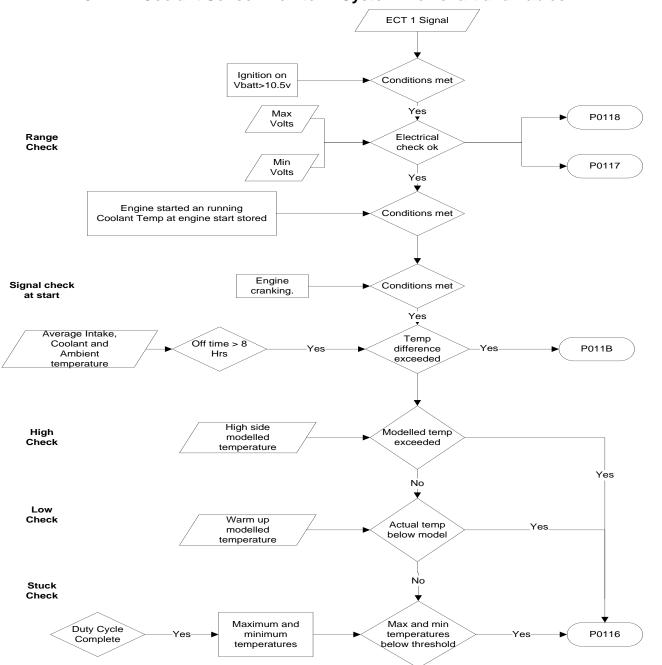
#### 12.4.1. Fault Codes

- P0118 Engine Coolant Temperature Sensor 1 Circuit High
- P0117 Engine Coolant Temperature Sensor 1 Circuit Low
- P0119 Engine Coolant Temperature Sensor 1 Circuit Intermittent/Erratic
- P0116 Engine Coolant Temperature Sensor 1 Circuit Range/Performance

### 12.4.2. Electrical Monitor

**P0118, P0117 and P0119** These monitors run continuously. The voltage output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded. Additionally, it tests for a loose connection of the temperature sensor by comparing the difference between the temperature sensor voltage and a low pass filtered value with a 2 second time constant (P0119). If a loose contact occurs, the signal will show a series of step changes between the sensor voltage and the open circuit voltage. Normally, this temperature does not change rapidly, so there should be only a small difference between the signal and the filtered signal. If this difference exceeds a threshold then a fault is declared.

## 12.4.3. Rationality Monitor


**P0116** High Side Check. A maximum coolant temperature model is formed using inputs from ambient air and mass air flow being initialized from a filtered coolant temperature. The coolant temperature signal is continuously compared to this. If the modeled coolant temperature is less than the actual coolant temperature then a high fault is declared.

A stuck sensor is declared if the maximum minus minimum temperatures are less than a threshold as measured over a duty cycle. A duty cycle is defined if the number of operational phases with normally higher intake air temperature (High phase) and lower intake air temperature (Low phase) have been encountered since vehicle start.

Low Side Check. The temperature value from the sensor is compared with a warming-up model, which represents the slowest warm-up of the engine in faultless condition. The model is formed using inputs from ambient temperature and mass air flow being initialized from a filtered coolant temperature. If the coolant temperature is below that of the model then a fault is declared.

### 12.4.4. Cold Start Monitor

**P011B**. An average of the Intake air temperatures / Coolant1 / Ambient air Temperature sensor values during an engine OFF period is calculated. If the particular sensor value minus the average value is greater than a sensor specific threshold for any period of time, then a fault is declared.





| Component/System                                      | Fault<br>Code | Malfunction Strategy Description                                                                              | Malfunction Criteria                                                                                                                                                     | Threshold<br>Value                            | Secondary Parameters                                                                | Enable Conditions                                 | Time<br>Req.    | MIL<br>illum. |
|-------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|---------------|
| gine Coolant<br>mperature (ECT 1)                     |               |                                                                                                               |                                                                                                                                                                          |                                               |                                                                                     |                                                   | •               |               |
| electrical check<br>high input TMEmax                 | P0118         | Out of range check                                                                                            | ECT 1 voltage (-39.8 °C)                                                                                                                                                 | > 4.9 v                                       | Ignition switch -                                                                   | On                                                | 2 s             | 2 Drive       |
| low input TMEmin<br>(DCTCW)                           | P0117         | Out of range check                                                                                            | ECT 1 voltage (143.3 °C)<br>For                                                                                                                                          | < 0.1 v<br>> 2 s                              | Battery voltage -                                                                   | > 10.5 v                                          |                 | Cycles        |
| TMEnpl                                                | P0119         | Test for a loose connector/<br>intermittent fault and compares a<br>raw and filtered sensor reading.          | Changes in temperature are<br>normally not rapid. If the difference<br>exceeds a threshold then a fault is<br>declared.                                                  | > 0.75 v                                      |                                                                                     |                                                   |                 | -             |
| Plausibility - Low Check<br><i>TMPmin</i><br>(DPLTCW) |               | Actual coolant sensor value is<br>continuously compared against<br>a lowest modeled coolant<br>sensor value.  | If the actual coolant sensor value<br>is less than the modeled coolant<br>sensor value (minus a<br>calibrateable tolerance) for ANY<br>time period then declare a fault. | Sensor <<br>Dynamic<br>Modeled<br>Value - 9°C | Engine started an running                                                           |                                                   | 0.2 s           |               |
| Plausibility - Stuck Check<br><i>TMPnpl</i>           | P0116         | The vehicle must complete a set<br>number of high phases (condition<br>for high heat input) and a set         | If the actual sensor value has<br>NOT increased by a calibrateable<br>amount (dependant on engine                                                                        |                                               | Ignition switch -<br>High phase                                                     | On<br>> 3                                         | Depends<br>upon |               |
|                                                       |               | number of low phases (condition for<br>low heat input) to allow a judgment<br>to be made.                     | start temperature) when the<br>engine is fully warm, then declare<br>a fault.                                                                                            | See table<br>KLDTMFXTM                        | Vehicle Speed -<br>Air Mass Flow -                                                  | 0 mph < vfzg < 13 mph<br>8 kg/h < ml < 64 kg/h    | drive<br>cycle  |               |
|                                                       |               |                                                                                                               |                                                                                                                                                                          |                                               | Modeled temperature -<br>for -<br>low Phase                                         | > -48 °C<br>> 5 s<br>>3                           | time            |               |
|                                                       |               |                                                                                                               |                                                                                                                                                                          |                                               | Vehicle Speed<br>Air Mass Flow -<br>or<br>In fuel cut                               | 25 mph < vfzg < 90 mph<br>72 kg/h < ml < 352 kg/h |                 |               |
| Plausibility - High Check<br><i>TMPmax</i>            | P0116         | Actual coolant sensor value is<br>continuously compared against<br>a highest modeled coolant<br>sensor value. | If the actual coolant sensor value<br>(-9°C) is greater than the<br>modeled coolant sensor value for<br>ANY time period then declare a<br>fault.                         | Sensor-9°C ><br>Dynamic<br>Modeled<br>value   | for -<br>Engine started and running<br>Engine speed -<br>integrated air mass flow - | > 5 s<br>> 1320 rpm<br>> 2 Kg                     | 0.2 s           |               |
| Range check TMCSmax<br>at start TMCSmin               |               | A comparison of coolant temp<br>against the average of TFA1, TFA2,<br>TFA3                                    | If the sensor value plus / minus the average value is greater                                                                                                            | +/- 20.25 °C<br>2 s                           | Ignition switch -<br>Battery voltage -                                              | On<br>> 10.5 v                                    | 2 s             |               |
|                                                       |               | Coolant1 and Ambient Air sensor values at engine start                                                        | than a calibrateable threshold for<br>period then declare a fault                                                                                                        |                                               | After engine off time                                                               | > 28800 s                                         |                 |               |

|                                               |               |                                  | Coolant Temperature  | e Sensor Mo        | onitoring                                            |                                                                                                                                                                                                                                                                      |              |               |
|-----------------------------------------------|---------------|----------------------------------|----------------------|--------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| Component/System                              | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters                                 | Enable Conditions                                                                                                                                                                                                                                                    | Time<br>Req. | MIL<br>illum. |
| Engine Coolant<br>Temperature (ECT 1) (con't) |               |                                  |                      |                    |                                                      |                                                                                                                                                                                                                                                                      |              |               |
|                                               |               |                                  |                      |                    | (min), (max) or (npl)                                | P00BD, P00BC, P00BF, P00BE,<br>P010B, P0101, P0236 (Bnpl),<br>P0236 (Bsig), P0236 (Pmax),<br>P0236 (Pmin), P0236 (Psig),<br>P0236 (Bmax), P0236 (Bmin),<br>P0103, P0102, P0100, P010D,<br>P010C, P010A, P0238, P0237,<br>P06A6, P0118, P0117, P0119,<br>P0501, P0500 |              |               |
|                                               |               |                                  |                      |                    | Fault Codes that disable P0116<br>(CSmin) or (CSmax) | P0113, P0112, P0114, P0072,<br>P0073, P007D, P007C, P007E,<br>P0118, P0117, P0119                                                                                                                                                                                    |              |               |

#### **Coolant Temperature**

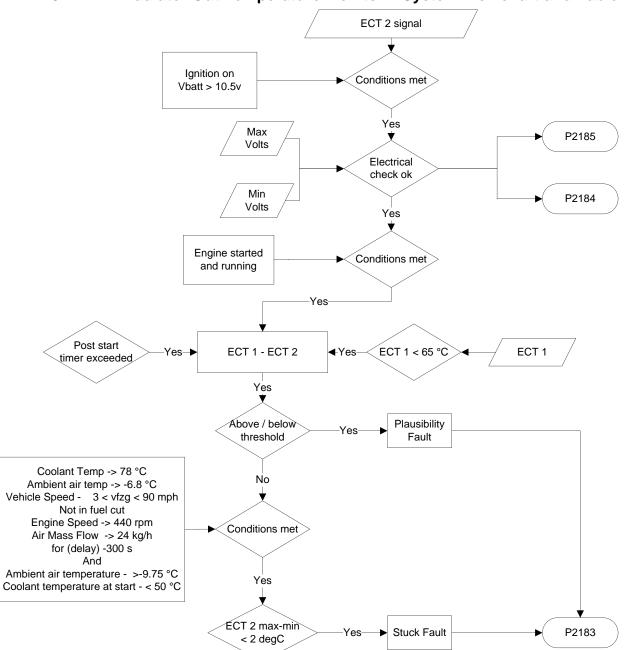
KLDTMFXTM - charact. line delta TMOT- threshold for not plausible fixed signal

| input x  | C° | -40 | -15 | 20  | 55  | 75  | 80  | 110 | 120 |
|----------|----|-----|-----|-----|-----|-----|-----|-----|-----|
| output w | °C | 3.8 | 3   | 2.3 | 2.3 | 2.3 | 0.8 | 0.8 | 0.8 |

### 12.5.Radiator Out Temperature Monitor ECT 2

#### 12.5.1. Fault Codes

- P2185 Engine Coolant Temperature Sensor 2 Circuit High
- P2184 Engine Coolant Temperature Sensor 2 Circuit Low
- P2183 Engine Coolant Temperature Sensor 2 Circuit Range/Performance


#### 12.5.2. Range Monitor

**P2185 and P2184.** These monitors run continuously. The output from the sensor is compared to absolute maximum and minimum thresholds and a suitable code set if exceeded.

#### 12.5.3. Rationality Monitor

**P2183**. Plausibility - Sensor biased high or low at start. At engine start, after a given engine stop period, the temperature difference between the sensors is calculated. If this difference is above or below a threshold then a fault code is set.

**P2183**. Stuck check - When fully warm the difference in the maximum and minimum radiator out temperature is calculated. If this difference is below a threshold then a fault is declared.



12.5.4. Radiator Out Temperature Monitor – System Flowchart and Table

| Component/S             | System                        | Fault<br>Code | Malfunction Strategy Description                                                       | Malfunction Criteria                                                                                                                                                                                                      | Threshold<br>Value                       | Secondary Parameters                                                                                                                                                                                     | Enable Conditions                                                                                          | Time<br>Reg.                              | MIL<br>illum      |
|-------------------------|-------------------------------|---------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|
| Radiator out cool<br>2) | lant (ECT                     | oouc          |                                                                                        |                                                                                                                                                                                                                           | Value                                    |                                                                                                                                                                                                          |                                                                                                            |                                           | indin             |
| Range Check             | TKAEmax<br>TKAEmin<br>(GGTKA) |               | Out of range check<br>Out of range check                                               | ECT 2<br>ECT 2<br>for                                                                                                                                                                                                     | > 138.75 °C<br>< -43.50 °C<br>> 2 s      | Ignition switch -<br>Battery voltage -                                                                                                                                                                   | On<br>> 10.5 v                                                                                             | 0.2 s                                     | 2 Drive<br>Cycles |
| Signal Check            | ```                           | P2183         | Check for a hanging sensor at start<br>- to identify if ECT2 is biased high<br>or low. | At engine start the temperature<br>difference between ECT 1 and ECT<br>2 is calculated. If this difference is<br>above or below a threshold based<br>upon ECT 2 temperature then a<br>fault is declared                   | KLSTKAP<br>(table)<br>KLSTKAN<br>(table) | Engine speed -<br>Coolant Temp -<br>Engine stop time                                                                                                                                                     | Passed from cranking to start<br>< 65 °C<br>> 8 hrs                                                        | 2 s                                       |                   |
| Signal Check - Si       | ensor stuck<br><i>TKARsig</i> | P2183         | sensor                                                                                 | When fully warm, and the entrance<br>conditions met, after a set delay<br>the difference in the max and min<br>ECT 2 temperatures are calculated.<br>If this difference is below a<br>threshold then a fault is declared. | <<br>KLDTTKAFX<br>(table)                | Coolant Temp -<br>Ambient air temp -<br>Vehicle Speed -<br>Not in fuel cut -<br>Engine Speed -<br>Air Mass Flow -<br>for (delay) -<br>and<br>Ambient air temperature -<br>Coolant temperature at start - | > 78 °C<br>> -6.8 °C<br>3 mph < vfzg < 90 mph<br>> 440 rpm<br>> 24. kg/h<br>300 s<br>> -9.75 °C<br>< 50 °C | Depends<br>upon<br>drive<br>cycle<br>time |                   |

KLSTKAP - upper Limit for lower area

| input x °C  | -30 | -10 | 0  | 30 | 50 | 100 |
|-------------|-----|-----|----|----|----|-----|
| output w °C | 20  | 20  | 20 | 20 | 20 | 20  |

#### KLSTKAN - lower Limit for lower area

| input x  | °C | -30 | 0   | 15  | 30  | 45  | 60  |
|----------|----|-----|-----|-----|-----|-----|-----|
| output w | °C | -20 | -20 | -20 | -20 | -20 | -20 |

#### KLDTTKAFX - Curve for calculation of B\_tkarsig

| input x °C  | -10 | 5   | 50  | 90  | 120 | 135 |
|-------------|-----|-----|-----|-----|-----|-----|
| output w °C | 1.5 | 0.8 | 0.8 | 0.8 | 1.5 | 2.3 |

Jaguar F-Type



# 13. Additional Tables

# 13.1.Cold Start Emission Reduction Strategy Performance Tables

|                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cold Start Ignition                                                                               | Timing Mon                                    | itoring                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                                        |                   |
|------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|
| Component/System                                                                                     | Fault<br>Code     | Malfunction Strategy Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Malfunction Criteria                                                                              | Threshold<br>Value                            | Secondary Parameters                                                                                                                                                                                                                                                                         | Enable Conditions                                                                                                                        | Time<br>Req.                           | MIL<br>illum.     |
| Cold Start Emission<br>Reduction Strategy<br>Performance                                             |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   |                                               |                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                        |                   |
| Ignition Timing Performance<br>(DETAKH)<br>Idle<br><i>ETAKHLmax</i><br>part load<br><i>ETAKHTmax</i> | (idle)<br>(pt_ld) | When catalyst heating is active<br>diagnostic calculates the difference<br>between the current ignition angle<br>efficiency and the desired ignition<br>angle efficiency. The differences<br>are integrated separately for idle<br>(detkhlav_w) and part load<br>conditions (detkhtav_w). The<br>integrated differences are divided<br>by the time in which idle or part load<br>was active. The calculated average<br>deviations are compared with<br>different thresholds for idle<br>(mxetkhll_w) and part load<br>(mxetkhtl_w) and part load<br>(mxetkhtl_w) and part load<br>set. The evaluation of the results is<br>only allowed when the time inside<br>idle or part load is greater than a<br>minimum necessary time constant. | For idle :-<br>detkhlav_w<br>once tkhindle_w<br>For part load :-<br>detkhtav_w<br>once tkhpload_w | > mxetkhll_w<br>> 6 s<br>>mxetkhtl_w<br>> 4 s | Catalyst heating active<br>Altitude -<br>Time delay after start -<br>Relative air charge -<br>Engine speed change -<br>For idle :-<br>Vehicle speed<br>Idle flag set<br>Desired engine efficiency<br>For part load :-<br>Vehicle speed -<br>Idle flag not set<br>Desired engine efficiency - | < 9135 ft<br>> 3 s<br>< 10 %<br>< 280 rpm in 1 s<br>= 0 mph<br>< 0.97<br>> 3 mph<br>< 0.97                                               | 8 s for<br>idle<br>8 s for<br>off idle | 2 Drive<br>Cycles |
|                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                   |                                               | Fault Codes that disable P050B                                                                                                                                                                                                                                                               | P2229, P2228, P0069, P2227,<br>P054C, P054A, P052C, P052A,<br>P000D, P0024, P000B, P0014,<br>P000C, P0021, P000A, P0011,<br>P0500, P0501 |                                        |                   |

|                                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                        | Cold Start Camshaft P                                                                                                                                    | osition Mo         | onitoring                                                                 |                                                                                                                                                                                                                                                        |              |                   |
|-----------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                                                                                                | Fault<br>Code  | Malfunction Strategy Description                                                                                                                                                                                                                                                                                                       | Malfunction Criteria                                                                                                                                     | Threshold<br>Value | Secondary Parameters                                                      | Enable Conditions                                                                                                                                                                                                                                      | Time<br>Req. | MIL<br>illum.     |
| Cold Start Emission<br>Reduction Strategy<br>Performance (cont)                                                 |                |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                    |                                                                           |                                                                                                                                                                                                                                                        |              |                   |
| Cold start Intake A camshaft<br>position timing over advanced<br><i>ENWCSmax</i><br><i>ENWCS2max</i><br>(DNWCS) | P052A<br>P052C | The intake camshaft adjustment is<br>monitored by checking the<br>camshaft adjustment angles during<br>cold start catalyst heating<br>conditions.<br>For this purpose, the sign-<br>dependant difference between<br>setpoint value and actual value is<br>compared to a threshold dependant<br>on oil temperature and engine<br>speed. | A setpoint/actual deviation is<br>classified as detected as soon as<br>there is a difference between<br>setpoint angle and actual angle for<br>more than | >10 °CrS<br>> 5 s  | catalyst heating with help of<br>camshaft adjustment active<br>VVT Active |                                                                                                                                                                                                                                                        | 5 s          | 2 Drive<br>Cycles |
|                                                                                                                 |                | speed.                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                    | Fault Codes that disable P052A                                            | P0341, P0343, P0342, P0346,<br>P0348, P0347, P06A7, P06A6,<br>P2089, P2088 P0010, P0016<br>(MntErr), P0016 (OfsErr), P0018<br>(MntErr), P0018 (OfsErr), P0017<br>(MntErr), P0017 (OfsErr), P0019<br>(MntErr), P0019 (OfsErr), P0336<br>(Errsig), P0335 |              |                   |
|                                                                                                                 |                |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                          |                    | Fault Codes that disable P052C                                            | P0341, P0343, P0342, P0346,<br>P0348, P0347, P06A7, P2093,<br>P2092, P0020, P06A6, P0016<br>(MntErr), P0016 (OfsErr), P0018<br>(MntErr), P0017 (MntErr), P0017<br>(OfsErr), P0019 (MntErr), P0019<br>(OfsErr), P0336 (Errsig), P0335                   |              |                   |

|                                                                                                       | _              |                                  | Cold Start Camshaft F                                                                                                                                | Position Mo            | onitoring                                                                 |                                                                                                                                                                                                                                                         | _            |                   |
|-------------------------------------------------------------------------------------------------------|----------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                                                                                      | Fault<br>Code  | Malfunction Strategy Description | Malfunction Criteria                                                                                                                                 | Threshold<br>Value     | Secondary Parameters                                                      | Enable Conditions                                                                                                                                                                                                                                       | Time<br>Req. | MIL<br>illum.     |
| Cold start Exhaust B<br>camshaft position timing over<br>advanced<br>ANWCSmax<br>ANWCS2max<br>(DNWCS) | P054A<br>P054C | As above                         | A setpoint/actual deviation is<br>classified as detected as soon as<br>there is a difference between<br>setpoint angle and actual angle<br>more than | >10 °CrS<br>for<br>5 s | catalyst heating with help of<br>camshaft adjustment active<br>VVT Active |                                                                                                                                                                                                                                                         | 5 s          | 2 Drive<br>Cycles |
|                                                                                                       |                |                                  |                                                                                                                                                      |                        |                                                                           | P0366, P0368, P0367, P0391,<br>P0393, P0392, P06A7, P0016<br>(MntErr), P0016 (OfsErr), P0018<br>(MntErr), P0018 (OfsErr), P0017<br>(MntErr), P0017 (OfsErr), P0019<br>(MntErr), P0019 (OfsErr), P0336<br>(Errsig), P0335, P06A6, P2091,<br>P2090, P0013 |              |                   |
|                                                                                                       |                |                                  |                                                                                                                                                      |                        | Fault Codes that disable P054C                                            |                                                                                                                                                                                                                                                         |              |                   |

|                                                                                                             |               |                                                                                                                                                                                                                                                                                        | Cold Start Fuel Pres                                                                                                                                                          | sure Moni                                           | toring                                         |                                                                                                                         |              |                   |
|-------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| Component/System                                                                                            | Fault<br>Code | Malfunction Strategy Description                                                                                                                                                                                                                                                       | Malfunction Criteria                                                                                                                                                          | Threshold<br>Value                                  | Secondary Parameters                           | Enable Conditions                                                                                                       | Time<br>Req. | MIL<br>illum.     |
| Cold Start Emission<br>Reduction Strategy<br>Performance (cont)                                             |               |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |                                                     |                                                |                                                                                                                         |              |                   |
| Cold start fuel pressure<br>Performance - max/min error<br><i>HDRKHmax</i><br><i>HDRKHmin</i><br>(DKVBDEPL) |               | The diagnostic checks if the high<br>rail pressure can be adjusted by the<br>MSV control circuit and if there is<br>an implausible deviation between<br>the actual MSV control value of the<br>actuator and desired control value<br>during cold start catalyst heating<br>conditions. | Filtered control deviation of high<br>pressure control                                                                                                                        | < -2.2 Mpa<br>For<br>3 s<br>> 2.2 Mpa<br>For<br>3 s | Catalyst heating active<br>After start counter | > 5 s                                                                                                                   | 5 s          | 2 Drive<br>Cycles |
| Catalyst heating Injector                                                                                   |               |                                                                                                                                                                                                                                                                                        |                                                                                                                                                                               |                                                     |                                                | P0251, P0256, P0254, P0259,<br>P0253, P0258, P0088 (Rmax),<br>P0087 (Rmin), P0191 (Rnpl),<br>P0191 (Rsig), P0193, P0192 |              |                   |
| output<br>InjCatHeatgErr<br>(InjSyG_CatHeatgDsmDiag)                                                        |               | Monitors the injection output<br>Whilst in catalyst heating                                                                                                                                                                                                                            | The number of faulty<br>combustions during catalyst<br>ceating is devided by the total<br>number of combustions. If this<br>ratio exceeds a threshold<br>a fault is decleared | 0.1                                                 | Catalyst heating active                        |                                                                                                                         | 20 s         | 2 Drive<br>Cycles |

# 13.2. Supercharger control Valve Monitoring Table

|                                                                              |               |                                                     | Supercharger Contro                                                                                      | ol Valve Mo                 | nitoring                                                               |                                           |              |                   |
|------------------------------------------------------------------------------|---------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------|-------------------------------------------|--------------|-------------------|
| Component/System                                                             | Fault<br>Code | Malfunction Strategy Description                    | Malfunction Criteria                                                                                     | Threshold<br>Value          | Secondary Parameters                                                   | Enable Conditions                         | Time<br>Req. | MIL<br>illum.     |
| Supercharge Control<br>Valve                                                 |               |                                                     |                                                                                                          |                             |                                                                        |                                           |              |                   |
| Circuit continuity <i>KRKEmax</i><br>(DKRK) <i>KRKEmin</i><br><i>KRKEnpl</i> | P0034         | Short to battery<br>Short to ground<br>Open circuit | Power stage internal check                                                                               |                             | Ignition switch -<br>Battery voltage -                                 | On<br>> 11 v                              | 0.2 s        | 2 Drive<br>Cycles |
| Sensor Voltage <i>KRKLmax</i><br><i>KRKLmin</i><br>(GGKRK)                   | P2564         | Out of range check<br>Out of range check            | SCV Voltage<br>SCV Voltage<br>for                                                                        | > 4.8 v<br>< 0.2 v<br>0.2 s |                                                                        |                                           |              |                   |
| KRKsig                                                                       |               | PWM output observation                              | If the PWM signal exceeds a<br>threshold for a time period a<br>Fault flag is set                        | > 50 %<br>for<br>10 s       | Ignition switch -<br>Battery voltage -<br>Engine Coolant temperature - | On<br>> 11 v<br>-40 °C < ect1 < 143.25 °C | 10 s         |                   |
| KRKnpl                                                                       | P132B         | Valve actual/desired position<br>check              | If the desired and actual<br>valve position exceeds a<br>threshold for a set time<br>a fault flag is set | > 20 %<br>for<br>2 s        | Intake Air Temperature -                                               | -40 °C < tans < 60 °C                     | 2 s          |                   |
| KRKOmax<br>KRKOmin<br>(DKRK)                                                 |               | Adaption check                                      | If the sensor voltage at the<br>mechanical stop position<br>exceeds a threshold then a<br>fault is set   | > 1.75 v                    |                                                                        |                                           | 0.2 s        |                   |

# 13.3. Ambient Temperature Sensor Monitoring Table

|                                               |               |                                                                                                                                         | Ambient Temperature                                                                                                                   | Sensor Mo                           | onitoring                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                 |
|-----------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| Component/System                              | Fault<br>Code | Malfunction Strategy Description                                                                                                        | Malfunction Criteria                                                                                                                  | Threshold<br>Value                  | Secondary Parameters                                                                         | Enable Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time<br>Req. | MIL<br>illum.   |
| Ambient Temperature<br>Sensor                 |               |                                                                                                                                         |                                                                                                                                       |                                     |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |                 |
| Range Check TUMEmax<br>TUMEmin<br>(BGTUMG)    |               | Out of range check<br>Out of range check                                                                                                | Amb TS<br>Amb TS<br>For                                                                                                               | > 140.25 °C<br>< -46.50 °C<br>> 4 s | Ignition switch -<br>Battery voltage -                                                       | On.<br>> 10.5 v                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 s          | 2 Driv<br>Cycle |
| Plausibility <i>TUMPnpl</i><br><i>TUMPsig</i> |               | Actual ambient temperature Is<br>compared against model<br>temperature                                                                  | If difference is above threshold<br>for<br>any time fault is declared                                                                 | +/- 35 °C<br>> 2 s                  | Engine started and running.<br>Coolant temp -<br>Air mass flow -<br>Intake Air Temperature - | 82 °C < ect1 < 104 °C<br>52 kg/h < mf < 352 kg/h<br>-40 °C < tans < 55 °C                                                                                                                                                                                                                                                                                                                                                                                   |              | _               |
| Range check TUMCSmax<br>At start TUMCSmin     |               | A comparison of Ambient temp<br>against the average of TFA1, TFA2,<br>TFA3<br>Coolant1 and Ambient Air<br>sensor values at engine start | If the sensor value plus / minus the<br>average value is greater<br>than a calibrateable threshold for<br>period then declare a fault | > +/-20 °C<br>for<br>> 2 s          | Ignition switch -<br>Battery voltage -<br>After engine off time                              | On<br>> 10.5 v<br>> 28800 s                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 s          |                 |
|                                               |               |                                                                                                                                         |                                                                                                                                       |                                     |                                                                                              | P0073, P0072, P0111 (Rmax),<br>P0111 (Rmin), P0111 (CSmax),<br>P0111 (CSmin), P0113, P0112,<br>P0114, P00BD, P00BC, P00BF,<br>P00BE, P010B, P0101, P0236<br>(Bnpl), P0236 (Bsig), P0236<br>(Pmax), P0236 (Pmin), P0236<br>(Psig), P0236 (Bmax), P0236<br>(Bmin), P0103, P0102, P0100,<br>P010D, P010C, P010A, P0238,<br>P0237, P0116 (Pmax), P0126,<br>P0116 (Pnpl), P0116 (CSmax),<br>P0116 (CSmin), P0335, P06A6,<br>P0501, P0500, P0118, P0117,<br>P0119 |              |                 |
|                                               |               |                                                                                                                                         |                                                                                                                                       |                                     | Fault Codes that disable P0071<br>(CSmax) or (CSmin)                                         | P0113, P0112, P0114, P0072,<br>P0073, P007D, P007C, P007E,<br>P0119, P0118, P0117                                                                                                                                                                                                                                                                                                                                                                           |              |                 |

# 13.4. Sensor Supply Voltage and Main Relay Monitoring Table

|                       | Sensor Supply Voltage and Main Relay Monitoring |                                  |                      |                    |                                     |                   |              |               |  |  |
|-----------------------|-------------------------------------------------|----------------------------------|----------------------|--------------------|-------------------------------------|-------------------|--------------|---------------|--|--|
| Component/System      | Fault<br>Code                                   | Malfunction Strategy Description | Malfunction Criteria | Threshold<br>Value | Secondary Parameters                | Enable Conditions | Time<br>Req. | MIL<br>illum. |  |  |
| Sensor Supply Monitor |                                                 |                                  |                      |                    |                                     |                   |              |               |  |  |
| SSpMon1               | P06A6                                           | Sensor supply voltage check      | Voltage between      | 4.8 v ~ 5.2 v      | Ignition switch -                   | On                | 0.2 s        | 2 Drive       |  |  |
| SspMon2               | P06A7                                           |                                  |                      |                    | Battery voltage -                   | > 10.5 v          |              | Cycles        |  |  |
| (SSpMon1Err) SspMon3  | P06A8                                           |                                  |                      |                    |                                     |                   |              |               |  |  |
| Main Relay Monitoring |                                                 |                                  |                      |                    |                                     |                   |              |               |  |  |
| MRlyErlyOpngRng       | P068A                                           | Early opening engine running     | Shut down counter    | 4                  | Transition from ignition off to on. |                   | 0.7 s        |               |  |  |

# 13.5.Knock Sensor Monitoring Table

|                           |               |                                                                   | Knock Sensor                                                             | Monitoring         | I                        |                   |              |               |
|---------------------------|---------------|-------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------|--------------------------|-------------------|--------------|---------------|
| Component/System          | Fault<br>Code | Malfunction Strategy Description                                  | Malfunction Criteria                                                     | Threshold<br>Value | Secondary Parameters     | Enable Conditions | Time<br>Req. | MIL<br>illum. |
| Knock Sensor              |               |                                                                   |                                                                          |                    |                          |                   |              |               |
| KnDetSens1PortAMax / Bmax | P0328         | Short circuit sensor 1 Vbatt                                      | Monitor measures the sensor signal                                       |                    | Engine speed -           | > 1600 rpm        | 0.2 s        | 2 Drive       |
| KnDetSens1PortAMin / BMin | P0327         | Short circuit sensor 1 ground                                     | voltage and compares it against a                                        |                    | Knock control is active. |                   |              | Cycles        |
| KnDetSens2PortAMax / Bmax | P0333         | Short circuit sensor 2 Vbatt                                      | threshold which could only be<br>breached if the signal in an error      |                    |                          |                   |              |               |
| KnDetSens2PortAMin / Bmin | P0332         | Short circuit sensor 2 ground                                     | state                                                                    |                    |                          |                   |              |               |
| KnDetSens3PortAMax / Bmax | P032D         | Short circuit sensor 3 Vbatt                                      |                                                                          |                    |                          |                   |              |               |
| KnDetSens3PortAMin / BMin | P032C         | Short circuit sensor 3 ground                                     |                                                                          |                    |                          |                   |              |               |
| KnDetSens4PortAMax / Bmax | P033D         | Short circuit sensor 4 Vbatt                                      |                                                                          |                    |                          |                   |              |               |
| KnDetSens4PortAMin / BMin | P033C         | Short circuit sensor 4 ground                                     |                                                                          |                    |                          |                   |              |               |
| (KnDetLTest)              |               |                                                                   |                                                                          |                    |                          |                   |              |               |
| KS1max                    |               | Monitors knock sensor voltage for                                 | Knock sensor voltage measured for                                        |                    |                          |                   | 3 s          |               |
| KS1min                    | P0327         | knock sensor 1. Monitor checks for                                | knock sensor 1, is standardized                                          |                    |                          |                   |              |               |
| (DKRS)                    |               | harness breaks, disconnected sensors or short circuit of wires to | according to the measured voltage<br>and power stage amplification value |                    |                          |                   |              |               |
| (DKR3)                    |               | power or ground.                                                  | being used. Standardized value is                                        |                    |                          |                   |              |               |
|                           |               | ponor or ground.                                                  | compared with a value, mapped                                            |                    |                          |                   |              |               |
|                           |               |                                                                   | against engine speed.                                                    |                    |                          |                   |              |               |
|                           |               |                                                                   | Fault is raised if standardized knock                                    |                    |                          |                   |              |               |
|                           |               |                                                                   | sensor voltage is greater(max) or less (min) than the mapped value       |                    |                          |                   |              |               |
|                           |               |                                                                   | for 3 seconds                                                            |                    |                          |                   |              |               |
|                           |               |                                                                   |                                                                          |                    |                          |                   |              |               |
| KS2max                    | P0333         | Monitors knock sensor voltage for                                 | Knock sensor voltage measured for                                        |                    |                          |                   |              |               |
|                           |               | knock sensor 2. Monitor checks for                                | knock sensor 2, is standardized                                          |                    |                          |                   |              |               |
|                           |               | harness breaks, disconnected                                      | according to the measured voltage                                        |                    |                          |                   |              |               |
| (DKRS)                    |               | sensors or short circuit of wires to                              | and power stage amplification value                                      |                    |                          |                   |              |               |
|                           |               | power or ground.                                                  | being used. Standardized value is<br>compared with a value, mapped       |                    |                          |                   |              |               |
|                           |               |                                                                   | against engine speed.                                                    |                    |                          |                   |              |               |
|                           |               |                                                                   | Fault is raised if standardized knock                                    |                    |                          |                   |              |               |
|                           |               |                                                                   | sensor voltage is greater(max) or                                        |                    |                          |                   |              |               |
|                           |               |                                                                   | less (min) than the mapped value                                         |                    |                          |                   |              |               |
|                           |               |                                                                   | for 3 seconds                                                            |                    |                          |                   |              |               |

|                            |               |                                                                                                                                                                     | Knock Sensor                                                                                                                                                                                                                                                                                                                                                                       | Monitoring         |                      |                   |              |               |
|----------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|--------------|---------------|
| Component/System           | Fault<br>Code | Malfunction Strategy Description                                                                                                                                    | Malfunction Criteria                                                                                                                                                                                                                                                                                                                                                               | Threshold<br>Value | Secondary Parameters | Enable Conditions | Time<br>Req. | MIL<br>illum. |
| Knock Sensor (cont)        |               |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                    |                    |                      |                   |              |               |
| KS3max<br>KS3min<br>(DKRS) | P033D         | Monitors knock sensor voltage for<br>knock sensor 1. Monitor checks for<br>harness breaks, disconnected<br>sensors or short circuit of wires to<br>power or ground. | Knock sensor voltage measured for<br>knock sensor 1, is standardized<br>according to the measured voltage<br>and power stage amplification value<br>being used. Standardized value is<br>compared with a value, mapped<br>against engine speed.<br>Fault is raised if standardized knock<br>sensor voltage is greater(max) or<br>less (min) than the mapped value<br>for 3 seconds |                    |                      |                   | 3 s          |               |
| KS4max<br>KS4min<br>(DKRS) | P033C         | Monitors knock sensor voltage for<br>knock sensor 2. Monitor checks for<br>harness breaks, disconnected<br>sensors or short circuit of wires to<br>power or ground. | Knock sensor voltage measured for<br>knock sensor 2, is standardized<br>according to the measured voltage<br>and power stage amplification value<br>being used. Standardized value is<br>compared with a value, mapped<br>against engine speed.<br>Fault is raised if standardized knock<br>sensor voltage is greater(max) or<br>less (min) than the mapped value<br>for 3 seconds |                    |                      |                   |              |               |

# **13.6.Ignition Coil Driver Monitoring Table**

|                                                                                                                                                                                                                      |                                                                                                      |                                                                                                                        | Ignition Coil Drive                                                                                                                                                                                                                                          | er Monitori        | ng                                               |                   |              |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------|-------------------|--------------|-------------------|
| Component/System                                                                                                                                                                                                     | Fault<br>Code                                                                                        | Malfunction Strategy Description                                                                                       | Malfunction Criteria                                                                                                                                                                                                                                         | Threshold<br>Value | Secondary Parameters                             | Enable Conditions | Time<br>Req. | MIL               |
| nition Coil Drives                                                                                                                                                                                                   |                                                                                                      |                                                                                                                        |                                                                                                                                                                                                                                                              |                    |                                                  |                   |              |                   |
| cyl 1 IgnCIPsOpenLoad<br>cyl 5 IgnCIPsOpenLoad<br>cyl 4 IgnCIPsOpenLoad<br>cyl 2 IgnCIPsOpenLoad                                                                                                                     | 4 P0355<br>8 P0354<br>9 P0352                                                                        | Open load (signal error) of IgnCIPs<br>power stage                                                                     | Monitor reads the voltage of the<br>ECM Terminal connected to the coil<br>igniter and compares this with an<br>expected voltage profile. The signal                                                                                                          |                    | Engine started and running.<br>Battery voltage - | > 10.5 v          | 0.1 s        | 2 Drive<br>Cycles |
| cyl 6 IgnCIPsOpenLoad<br>cyl 3 IgnCIPsOpenLoad<br>cyl 7 IgnCIPsOpenLoad<br>cyl 8 IgnCIPsOpenLoad                                                                                                                     | P0353<br>P0357<br>P0358                                                                              |                                                                                                                        | is diagnosed with respect to open<br>circuit, Short circuit to battery and<br>short circuit to ground                                                                                                                                                        |                    |                                                  |                   |              |                   |
| cyl 1 IgnCIPsShCirBattd<br>cyl 5 IgnCIPsShCirBattd<br>cyl 4 IgnCIPsShCirBattd<br>cyl 2 IgnCIPsShCirBattd<br>cyl 6 IgnCIPsShCirBattd<br>cyl 3 IgnCIPsShCirBattd<br>cyl 7 IgnCIPsShCirBattd<br>cyl 8 IgnCIPsShCirBattd | <ul> <li>P2313</li> <li>P2310</li> <li>P2304</li> <li>P2316</li> <li>P2307</li> <li>P2319</li> </ul> |                                                                                                                        | Monitor reads the voltage of the<br>ECM Terminal connected to the coil<br>igniter and compares this with an<br>expected voltage profile. The signal<br>is diagnosed with respect to open<br>circuit, Short circuit to battery and<br>short circuit to ground |                    |                                                  |                   |              |                   |
| cyl 1 IgnCIPsShCirGndd<br>cyl 5 IgnCIPsShCirGndd<br>cyl 4 IgnCIPsShCirGndd<br>cyl 2 IgnCIPsShCirGndd<br>cyl 6 IgnCIPsShCirGndd<br>cyl 3 IgnCIPsShCirGndd<br>cyl 7 IgnCIPsShCirGndd<br>cyl 8 IgnCIPsShCirGndd         | P2300<br>P2312<br>P2309<br>P2303<br>P2303<br>P2315<br>P2316<br>P2318<br>P2318<br>P2321               | Short circuit to ground (min error) of<br>the IgnClPs power stageOpen load<br>(signal error) of IgnClPs power<br>stage | Monitor reads the voltage of the<br>ECM Terminal connected to the coil<br>igniter and compares this with an<br>expected voltage profile. The signal<br>is diagnosed with respect to open<br>circuit, Short circuit to battery and<br>short circuit to ground |                    |                                                  |                   |              |                   |
| (IGNCLPS_DIA)<br>IgnClPsDevSpiErr<br>IgnClPsDevSpiErr2                                                                                                                                                               | P0350                                                                                                | SPI Communication error of the<br>IgnCIPs power stage                                                                  | Encoded bit wise device<br>communication signal not received                                                                                                                                                                                                 |                    |                                                  |                   |              |                   |
| IgnCIPsDevSpiErrz<br>IgnCIPsDevInitErr<br>IgnCIPsDevInitErr                                                                                                                                                          | 1 P0350                                                                                              | SPI Communication between<br>ignition microcontrollers and<br>ignition driver module                                   | Encoded bit wise device<br>communication signal not verified                                                                                                                                                                                                 |                    |                                                  |                   |              |                   |
| lgnClPsDevIdentErr<br>lgnClPsDevIdentErr2                                                                                                                                                                            | P0350                                                                                                | Identification of IC error of the<br>IgnCIPs power stage                                                               | Encoded bit wise device<br>identification not verified                                                                                                                                                                                                       |                    |                                                  |                   |              |                   |

# 13.7. Vehicle Speed Determination Table

| Vehicle Speed Determination Monitoring |               |                                            |                                          |                              |                                |                   |              |               |  |
|----------------------------------------|---------------|--------------------------------------------|------------------------------------------|------------------------------|--------------------------------|-------------------|--------------|---------------|--|
| Component/System                       | Fault<br>Code | Malfunction Strategy<br>Description        | Malfunction Criteria                     | Threshold Value              | Secondary Parameters           | Enable Conditions | Time<br>Req. | MIL<br>illum. |  |
| Vehicle Speed<br>Determination         |               |                                            |                                          |                              |                                |                   |              |               |  |
| VehVPlaus                              | P0501         | Plausibility defect for vehicle            | Actual engine torque - average<br>torque | >150 Nm                      | Ignition switch -              | On                | 5 s          | 2 Drive       |  |
|                                        |               | speed                                      | Engine speed -<br>Vehicle speed -<br>for | > 2500 rpm<br>< 2 mph<br>5 s | Battery voltage -              | > 10.5 v          |              | cycles        |  |
| VehVSig<br>(VehV_VD/DD/2MED)           | P0500         | Signal error for vehicle speed over<br>CAN | CAN signal error detection               |                              |                                |                   |              |               |  |
|                                        |               |                                            |                                          |                              | Fault Codes that disable P0501 | P0500             |              |               |  |

# 13.8.Throttle Monitoring Tables

| Throttle Monitoring                                                                              |               |                                                                                                 |                                                                                                                             |                            |                                        |                   |              |                   |  |  |
|--------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------|-------------------|--------------|-------------------|--|--|
| Component/System                                                                                 | Fault<br>Code | Malfunction Strategy Description                                                                | Malfunction Criteria                                                                                                        | Threshold<br>Value         | Secondary Parameters                   | Enable Conditions | Time<br>Req. | MIL<br>illum.     |  |  |
| Throttle Monitoring                                                                              |               |                                                                                                 |                                                                                                                             |                            |                                        |                   |              |                   |  |  |
| Throttle Assembly Fault<br>DVEEmax<br>DVEEmin                                                    | P2103         | Throttle motor harness or throttle<br>driver shorted high<br>Throttle motor harness or throttle | Throttle motor PWM signal exceeding                                                                                         |                            | Ignition switch -<br>Battery voltage - | On<br>> 8 v       | 0.6 s        | 2 Drive<br>Cycles |  |  |
| DVEEnpl                                                                                          | P2101         | driver shorted low<br>Motor harness / assembly shorted<br>together or                           |                                                                                                                             | +/- 80%<br>for<br>> 0.6 ms | Battery voltage -                      | 2 0 V             |              |                   |  |  |
| DVEEsig<br>(DDVE)                                                                                |               | motion of the throttle blade.                                                                   |                                                                                                                             |                            |                                        |                   |              |                   |  |  |
| Throttle valve 1st<br>potentiometer - Min error<br><i>DK1Pmin</i><br>Max error<br><i>DK1Pmax</i> | P0122         | Voltage check                                                                                   | Throttle position sensor 1 is checked to be within valid range.                                                             | 0.17 v ~ 4.6 v             |                                        |                   | 5 s          |                   |  |  |
| Sig DK1Pnpl                                                                                      |               | Throttle position sensor check                                                                  | Sensor 1 differs from Sensor 2<br>TPS1 differs from calculated<br>throttle position by (calculated from<br>air charge).     | > 6.3 %.<br>> 9 %          |                                        |                   | 0.5 s        |                   |  |  |
| Throttle valve 2nd<br>potentiometer - Min error<br><i>DK2Pmin</i><br>Max error<br><i>DK2Pmax</i> | P0222         | Voltage check                                                                                   | Throttle position sensor 2 is<br>checked to be within valid range.                                                          | 0.17 v ~ 4.6 v             |                                        |                   | 5 s          |                   |  |  |
| sig DK2Pnpl                                                                                      |               | Throttle position sensor check                                                                  | Sensor 1 differs from Sensor 2<br>Sensor 2 differs from calculated<br>throttle position by (calculated from<br>air charge). | > 6.3 %.<br>> 9 %          |                                        |                   | 0.5 s        |                   |  |  |
| Difference fault between throttle sensor 1 and 2 <i>DKnpl</i>                                    | P2135         | Error state                                                                                     | Error reported if error state in either<br>throttle position sensor reported                                                |                            |                                        |                   | 0.5 s        |                   |  |  |

# 13.9.Throttle Monitoring Tables

| Throttle Monitoring                                                         |               |                                                             |                                                                                                                                                                                                                                                                                                           |                                                         |                                                                                             |                                           |              |                             |
|-----------------------------------------------------------------------------|---------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------|--------------|-----------------------------|
| Component/System                                                            | Fault<br>Code | Malfunction Strategy Description                            | Malfunction Criteria                                                                                                                                                                                                                                                                                      | Threshold<br>Value                                      | Secondary Parameters                                                                        | Enable Conditions                         | Time<br>Req. | MIL                         |
| nrottle Monitoring (cont)                                                   |               |                                                             |                                                                                                                                                                                                                                                                                                           |                                                         |                                                                                             |                                           |              |                             |
| Return spring check open<br>(spg_opn) & (spg_cls)<br>DVEAsig & DVEFmax      |               | During initialisation the spring<br>check is performed      | The throttle is opened >12% above<br>limphome position. If this is not<br>achieved within 0.20s a fault stored.<br>At >12% the powerstage is disabled<br>and the return spring should<br>naturally close the throttle. If a<br>position >3% of limphome position<br>present after 0.7s a fault is logged. |                                                         | Ignition switch -                                                                           | On                                        | 1 s          | 2 Dri <sup>i</sup><br>Cycle |
| DVEVnpl                                                                     | P0121         | Throttle amplification check                                | If the amplification or offset factors are outside limits                                                                                                                                                                                                                                                 | 1% ~ 4 %<br>-0.1 V ~ 0.1 V                              |                                                                                             |                                           |              |                             |
| limphome air position<br>(limp_home_pos)<br>DVENnpl                         |               | Adaption position check –<br>limphome position plausibility | Limphome position should be.<br>or<br>TPS1 voltage at limphome position<br>should be within.                                                                                                                                                                                                              | 1.8 % ~ 17.5 %<br>or<br>0.15 v ~ 0.16 v                 |                                                                                             |                                           | 1 s          |                             |
| DV-E position deviation<br>DVELnpl                                          |               | Requested/actual throttle position comparison               | Requested throttle position deviates<br>from measured throttle position by<br>a factor<br>Note if the engine is not running<br>and the engine or ambient<br>temperature below threshold an<br>extra factor is added                                                                                       | > 4 %<br>for<br>> 0.5 s<br>< 5 °C and<br>additional 3 % | Engine started and running.<br>Battery voltage -<br>Ignition switch -                       | > 8 v<br>On                               | 0.5 s        | -                           |
| DLR outside valid control<br>ange - Max Fault DVERmax<br>Min Fault DVERmin  |               | Throttle motor duty check                                   | Throttle motor PWM signal<br>exceeding a threshold for given<br>period                                                                                                                                                                                                                                    | +/- 80 % for<br>> 0.6 s                                 |                                                                                             |                                           | 0.6 s        |                             |
| Incorrect throttle adaption<br>DVEUBmax/min<br>DVEUnpl & DVEUWnpl<br>(DDVE) |               | Throttle adaption check                                     | Adaptions not set                                                                                                                                                                                                                                                                                         |                                                         | Full ECU power down followed by<br>ignition On without starting engine<br>Battery voltage - | ignition off > 60 s<br>for 30 s<br>> 10 v | 30 s         |                             |

# **13.10.** Acceleration Pedal Position Sensor Monitoring Table

|                                                                              |               | /                                | Acceleration Pedal Position                                                                                                                | on Sensor                 | Monitoring                                 |                   |              |                   |
|------------------------------------------------------------------------------|---------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------------|-------------------|--------------|-------------------|
| Component/System                                                             | Fault<br>Code | Malfunction Strategy Description | Malfunction Criteria                                                                                                                       | Threshold<br>Value        | Secondary Parameters                       | Enable Conditions | Time<br>Req. | MIL<br>illum.     |
| Acceleration Pedal Position device driver Sensor 2                           |               |                                  |                                                                                                                                            |                           |                                            |                   |              |                   |
| Signal Range Check High for<br>APP2<br>SRCHighAPP2                           | P2128         | PWM Frequency check              | If duty Cycle is above threshold for<br>a time period then high fault<br>declared                                                          | > 94 %<br>for<br>> 0.25 s |                                            |                   | 0.25 s       | 2 Drive<br>Cycles |
| Signal Range Check Low for<br>APP2<br>SRCLowAPP2                             | P2127         | PWM Frequency check              | If duty Cycle is below threshold for<br>a time period then low fault<br>declared                                                           | < 4 %<br>for<br>> 0.25 s  |                                            |                   | 0.25 s       |                   |
| (APP_DD2)                                                                    |               |                                  |                                                                                                                                            |                           | Fault Codes that disable P2127<br>or P2128 | P06A7             |              |                   |
| Acceleration Pedal Position device driver Sensor 1                           |               |                                  |                                                                                                                                            |                           |                                            |                   |              |                   |
| Signal Range Check High for<br>APP1                                          | P2123         | Can signal check                 | The analogue signal should be in<br>the range 6% to 90%. If the signal<br>is above a threshold the signal is                               | > 94 %                    | Ignition switch -                          | On                | 1 s          | 2 Drive<br>Cycles |
| SRCHighAPP1<br>Signal Range Check low for<br>APP1<br>SRCLowAPP1<br>(APP_DD1) | P2122         | Can signal check                 | deemed high<br>The analogue signal should be in<br>the range 6% to 90%. If the signal<br>is below a threshold the signal is<br>deemed high | < 4 %                     |                                            |                   | 1 s          |                   |
|                                                                              |               |                                  |                                                                                                                                            |                           | Fault Codes that disable P2122 or<br>P2123 | P06A6             |              |                   |
| Acceleration Pedal Position<br>Plausibility                                  |               |                                  |                                                                                                                                            |                           |                                            |                   |              |                   |
| Plausibility Check between<br>APP1 and APP2<br>(syncAPP)                     | P2138         | Signal comparison                | Both accelerator pedal inputs<br>(analogue & PWM) should be within<br>a threshold for a time period.                                       | < 6 %<br>> 0.4 s          | Ignition switch -                          | On                | 0.4 s        | 2 Drive<br>Cycles |

# 13.11. ECM Monitoring Tables

|                                                                                              | ECM Monitoring |                                                                                            |                                                                                                                 |                    |                      |                   |              |                   |  |  |  |  |  |
|----------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|--------------|-------------------|--|--|--|--|--|
| Component/System                                                                             | Fault<br>Code  |                                                                                            |                                                                                                                 | Threshold<br>Value | Secondary Parameters | Enable Conditions | Time<br>Req. | MIL<br>illum.     |  |  |  |  |  |
| ECM Monitoring                                                                               |                |                                                                                            |                                                                                                                 |                    |                      |                   |              |                   |  |  |  |  |  |
| EEPEraseErr, EEPRdErr &<br>EEPWrErr<br>(EEP)                                                 |                | EEPROM performance<br>(erase), (read) & (write)                                            | EEPROM emulation lifetime<br>exceeded                                                                           |                    | Ignition switch -    | On                | 0.2 s        | 2 Drive<br>Cycles |  |  |  |  |  |
| MoCComctFrrMM                                                                                | P060A          | Internal software fault of the ECM                                                         | Internal error reaction checks<br>indicate that the software is not<br>functioning as expected                  |                    | ]                    |                   |              |                   |  |  |  |  |  |
| ECU fault - injection quantity<br>limitation <i>MoFAirFlCtOff</i><br>ECU fault - in check of |                | Internal ECU check<br>(FICtOff)<br>Cylinder fuel correction check                          | Diagnosed ECU fault which leads<br>to an injection quantity limitation.<br>Individual cylinder fuel corrections |                    |                      |                   |              |                   |  |  |  |  |  |
| cylinder individual fuel<br>corrections <i>MoFAirFICyI</i><br>Check of predicted air mass    |                | (FICyl)                                                                                    | were found not plausible, internal<br>software error.<br>Predicted air mass was found not                       |                    |                      |                   |              |                   |  |  |  |  |  |
| failed MoFAirFilgPrdc                                                                        | P061D          | (FilgPrdc)                                                                                 | plausible, internal software error                                                                              |                    |                      |                   |              |                   |  |  |  |  |  |
| ECU fault or sensor in mixture<br>check MoFGkc                                               | P0169          | Mixture correction factor check<br>(Gkc)                                                   | Plausibility check of the mixture correction factors                                                            |                    |                      |                   |              |                   |  |  |  |  |  |
| ECU fault - comparison of<br>lambda and operation mode<br><i>MoFModc</i>                     | P0169          | Fuelling mode check<br>(Modc)                                                              | Incorrect fuelling mode active,<br>internal software error                                                      |                    |                      |                   |              |                   |  |  |  |  |  |
| ECU fault or sensor in rl-<br>comparison <i>MoFRIc</i>                                       | P0169          | Relative fuel mass check<br>(Rlc)                                                          | Relative fuel mass not plausible,<br>internal software error.                                                   |                    |                      |                   |              |                   |  |  |  |  |  |
| Supply MonUMaxSupply1                                                                        |                | Internal ECU check - supply                                                                | Max voltage                                                                                                     | > 5.2 v            |                      |                   |              |                   |  |  |  |  |  |
| Voltage MonUMinSupply1                                                                       |                | voltage check                                                                              | Min voltage                                                                                                     | < 5 v              |                      |                   |              |                   |  |  |  |  |  |
| MonUMaxSupply2                                                                               |                |                                                                                            |                                                                                                                 |                    |                      |                   |              |                   |  |  |  |  |  |
| MonUMinSupply2                                                                               |                |                                                                                            |                                                                                                                 |                    |                      |                   |              |                   |  |  |  |  |  |
| MonUMaxSupply3                                                                               |                |                                                                                            |                                                                                                                 |                    |                      |                   |              |                   |  |  |  |  |  |
| MonUMinSupply3                                                                               | P0652          | Internal COLLaborate Manitarian of                                                         |                                                                                                                 |                    | -                    |                   |              |                   |  |  |  |  |  |
| MoFICOL1                                                                                     | P0606          | Internal ECU check - Monitoring of<br>injection cut off from level1<br>(FICOL1)            | Internal error reaction checks<br>indicate that the software is not<br>functioning as expected                  |                    |                      |                   |              |                   |  |  |  |  |  |
| MoFICOL2                                                                                     | P0606          | Internal ECU check - Monitoring of<br>injection cut off from level2<br>(FICOL2)            | Internal error reaction checks<br>indicate that the software is not<br>functioning as expected                  |                    |                      |                   |              |                   |  |  |  |  |  |
| OCWDAActv, OCWDACom &<br>OCWDAOvrVltg                                                        |                | Internal ECU check - throttle drive<br>communication WDA/ABE.<br>(Actv), (Com) & (OvrVltg) | Internal check to ensure throttle<br>driver communication is plausible                                          |                    |                      |                   |              |                   |  |  |  |  |  |

|                                                                 | ECM Monitoring |                                                                                           |                                                                                                                   |                      |                                        |                 |               |                   |  |  |  |  |
|-----------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|-----------------|---------------|-------------------|--|--|--|--|
| Component/System Fault<br>Code Malfunction Strategy Description |                | Malfunction Strategy Description Malfunction Criteria                                     |                                                                                                                   | Secondary Parameters | Enable Conditions                      | Time<br>Req.    | MIL<br>illum. |                   |  |  |  |  |
| ECM Monitoring (cont)                                           |                |                                                                                           |                                                                                                                   |                      |                                        |                 |               |                   |  |  |  |  |
| Monitoring of accelerator pedal position MoFAPP                 |                | Compares both accelerator pedal<br>inputs against each other                              | if the difference between each signal<br>is greater than allowed                                                  | > 3.91 %             | Ignition switch -<br>Battery voltage - | On.<br>> 10.5 v | 0.1 s         | 2 Drive<br>Cycles |  |  |  |  |
| Fault of engine speed check<br>MoFESpd                          |                | Engine speed calculation based<br>upon ignition angle monitor<br>Internal software error. | Calculated speed is compared with<br>measured engine speed<br>Engine speed calculation was<br>found not plausible | > 320 rpm            | Engine started and running.            |                 |               |                   |  |  |  |  |
| ECU fault - ignition timing<br>MoFZwc                           |                | Torque check                                                                              | Torque changes for given ignition<br>change are compared                                                          | > 11.0               |                                        |                 |               |                   |  |  |  |  |
| Fault of torque – comparison<br>MoFTrqCmp                       |                | Delivered / requested torque check                                                        | Delivered Torque not plausible to<br>requested torque, internal software<br>error.                                |                      |                                        |                 |               |                   |  |  |  |  |

# 13.12. Network Management Tables

|                                                                                                        |       |                                                           | Network Managem                                                                                | nent Monitorii     | ng                   |                   |              |                   |
|--------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|--------------|-------------------|
| Component/System Fault<br>Code                                                                         |       | Molfunction Strategy Decorintion Molfunction Criteria     |                                                                                                | Threshold<br>Value | Secondary Parameters | Enable Conditions | Time<br>Req. | MIL<br>illum.     |
| Network Management                                                                                     |       |                                                           |                                                                                                |                    |                      |                   |              |                   |
| CAN Bus Communication<br>(VCTCan) NM_BusOffA                                                           |       | Can Signal Check                                          | CAN High shorted to ground<br>CAN low shorted to +12v                                          | Signal high/low    | Ignition switch -    | On                | 0.2 s        | 2 Drive<br>Cycles |
| CAN level<br>(Nm_Std) Nm_IDCheck                                                                       | U0300 | Rationality check                                         | Comparison between CAN level of<br>TCM and CAN level of Vehicle                                | Not equal          | Battery voltage -    | > 10.5 v          | 0.1 s        |                   |
| Lost Communication With<br>Anti-Lock Brake System<br>(ABS) Control Module<br>MS(EngECU)<br>NodeMon_ABS |       | CAN signals missing from ABS module.                      | ABS CAN ID not received.                                                                       | No ID.             |                      |                   | 0.2 s        |                   |
| Plausibility fault from ABS alive<br>counter<br><i>BrkABSAlivePlausErr</i>                             |       | Vehicle speed alive counter signal check from ABS module. | Vehicle speed alive counter signal loss or timing error.                                       | Not equal          |                      |                   | 0.1 s        |                   |
| Plausibility of faulty ABS<br>Checksum transmission<br>BrkABSCRC8PlausErr                              | U0415 | Vehicle speed alive counter signal check from ABS module. | Checksum from ABS ECU not<br>equal to ECU internal calculated<br>vehicle speed signal checksum | Not equal          |                      |                   |              |                   |
| Plausibility of faulty vehicle<br>speed alive counter<br>BrkABSCSPlausErr                              | U0415 | Vehicle speed alive counter signal check from ABS module. | Checksum from ABS ECU not equal to ECU internal checksum                                       | Not equal          |                      |                   |              |                   |
| Plausibility fault from<br>VehicleSpeedCounter<br>BrkVehSpdAlivePlausErr                               | U0415 | Vehicle speed signal check from<br>ABS module.            | Vehicle speed alive counter signal loss or timing error.                                       | Not equal          |                      |                   |              |                   |
| Plausibility fault by the<br>VehicleSpeed Checksum<br>BrkVehSpdCSPlausErr                              | U0415 | Vehicle speed signal check from<br>ABS module.            | Checksum from ABS ECU not equal to ECU internal checksum                                       | Not equal          |                      |                   |              |                   |
| Lost Communication With<br>(TCM) Transmission<br>Control Module<br>MS(EngECU) NodeMon_TCM              |       | CAN signals missing from TCM                              | TCM CAN ID not received.                                                                       | No ID.             |                      |                   | 0.2 s        |                   |
| Value of MinuteCounter is not<br>plausible<br><i>GlbDaTiPlaus</i>                                      | P2610 | Can Signal Check                                          | Can signal not available                                                                       | No signal          |                      |                   | 0.1s         | 1                 |
| MinuteCounter signal not<br>available via CAN<br><i>GlbDaTiSi</i> g                                    | P2610 |                                                           |                                                                                                |                    |                      |                   |              |                   |
| function monitoring: fault of<br>ECU ADC- low idle test pulse<br>MoCADCNTP                             | P060B | Check for correct conversion of<br>cyclic voltage signal  | A known voltage pulse signal is<br>applied and expected conversion<br>verified                 |                    |                      |                   |              |                   |

|                                                                                  | Network Management Monitoring |                                                                           |                                                                                                                                                                       |                    |                                |                   |              |                   |  |  |  |  |
|----------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------|-------------------|--------------|-------------------|--|--|--|--|
| Component/System                                                                 | Fault<br>Code                 | Malfunction Strategy Description                                          | Malfunction Criteria                                                                                                                                                  | Threshold<br>Value | Secondary Parameters           | Enable Conditions | Time<br>Req. | MIL<br>illum.     |  |  |  |  |
| Network Management (cont)                                                        |                               |                                                                           |                                                                                                                                                                       |                    |                                |                   |              |                   |  |  |  |  |
| function monitoring: fault of<br>ECU ADC - test voltage<br>MoCADCTst<br>(MOCADC) | P060B                         | Check for correct conversion of<br>fixed voltage signal                   | The ADC-test voltage-check reads a<br>fixed test voltage and checks the<br>converted value for valid values                                                           |                    |                                |                   | 0.1s         | 2 Drive<br>Cycles |  |  |  |  |
| Engine off timer check<br>BGTENGSCheck                                           |                               | Engine Off Time is not plausible in comparison with real shutdown period. | Generates estimated engine off<br>time from cool down rate of engine<br>coolant and compares this value<br>against body control module<br>estimate of engine off time | >3600 s            |                                |                   |              |                   |  |  |  |  |
|                                                                                  |                               |                                                                           | U                                                                                                                                                                     |                    | Fault Codes that disable P2610 | P062F             |              |                   |  |  |  |  |
| Initialization of CAN/LIN<br>controller Nm_SysInit<br>Nm_CtIInit                 | U1A14                         | CAN/LIN communication check                                               | Fault set when Volcano layer isn't able to initialize.                                                                                                                |                    |                                |                   | 0.1s         |                   |  |  |  |  |
| MIL request by automatic<br>gearbox<br>GbxMILReq                                 | P0700                         |                                                                           | MIL request by automatic gearbox                                                                                                                                      | CAN signal         |                                |                   |              |                   |  |  |  |  |
| MIL request by ABS-<br>ECUBrkMILReq                                              | P25A2                         | MIL request by ABS-ECU                                                    | MIL request by ABS-ECU                                                                                                                                                | CAN signal         |                                |                   |              |                   |  |  |  |  |

#### **14. Additional Information**

#### 14.1. Diagnostic Test Mode Compliance

The OBD system of the engine and gearbox control modules uses ISO standard 15765-4 to communicate with off board test equipment. The messages comply with SAE J1979, modes \$01 through \$04, modes \$06, \$07, \$09 and \$0A (permanent fault codes).

The basic algorithm used by the ECM for the calculation of the Calibration Verification Number has previously been used by Land Rover in the 2005 model year Range Rover. This was approved by ARB staff at a meeting on November 4th, 2003. The algorithm has had some minor changes since 2005. The memory area is now split into three ranges and the start and finish points for these ranges are varied by Bosch for different applications. A single CVN is now reported, in order to comply with the requirement for a single CAL ID, and one CVN for that CAL ID.

The algorithm used by the TCM for the calculation of the Calibration Verification Number was also approved by ARB staff at the meeting on November 4th, 2003.

The VIN reported to a scan tool in response to a Mode\$09, PID\$02 request is programmed once only when a vehicle is built or if a new ECM is fitted. This is in order to comply with (g)(4.8.2).

The read-out and the deletion of fault information is also possible using "IDS" service equipment. Please refer to a Land Rover repair manual or the service repair information websites at:

http://topix.landrover.jlrext.com/topix/i18n/index

### 14.2. Stored Engine Conditions - Mode\$02

The engine conditions present at the time of fault detection are stored in the ECM memory according to the requirements of the OBD regulation.

### 14.3.Communication of Monitor Test Results - Mode\$06

Diagnostic test results are output to a scan tool in accordance with the requirements of Mode\$06 of the SAE J1979 standard. The following table shows the allocation of monitor identifiers, test identifiers, unit and scaling identifiers and which DTCs are associated with each of the test results.

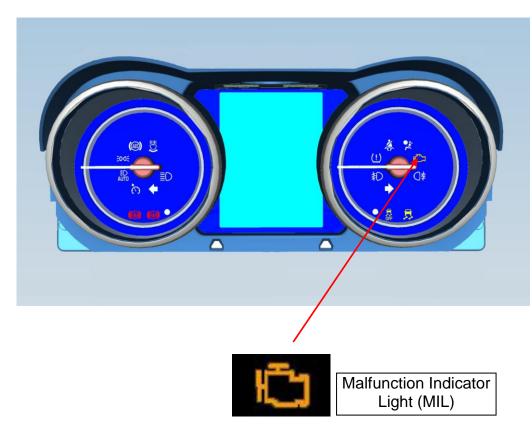
| OBD<br>MID | On-Board Diagnostic<br>Monitor Name        | Test<br>ID | Description                                                   | Unit &<br>Scaling<br>ID | Associated<br>DTC |
|------------|--------------------------------------------|------------|---------------------------------------------------------------|-------------------------|-------------------|
| 00         | OBD Monitor IDs<br>supported (\$01 - \$20) | -          |                                                               |                         |                   |
| 01         | Oxygen Sensor Monitor<br>Bank 1 - Sensor 1 | 83         | Pre-catalyst oxygen sensor<br>response test                   | 05                      | P0133             |
|            |                                            | 85         | Pre-catalyst oxygen sensor<br>response test1 – 3.0 V6 SC only | 05                      | P0133             |
|            |                                            | 84         | Pre-catalyst oxygen sensor offset<br>test                     | 85                      | P2096             |
| 02         | Oxygen Sensor Monitor                      | 05         | Oxygen sensor 2 transition time                               | 10                      | P013A             |
|            | Bank 1 - Sensor 2                          | 82         | Oxygen sensor 2 delay time rich to lean                       | 10                      | P013E             |
|            |                                            | 83         | Oxygen sensor 2 offset lean                                   | 0A                      | P2270             |
|            |                                            | 84         | Oxygen sensor 2 offset rich                                   | 0A                      | P2271             |
| 03         | Oxygen Sensor Monitor<br>Bank 1 – Sensor 3 | 83         | Oxygen sensor 3 offset lean                                   | 0A                      | P2274             |
|            |                                            | 84         | Oxygen sensor 3 offset rich                                   | 0A                      | P2275             |
| 05         | Oxygen Sensor Monitor<br>Bank 2 - Sensor 1 | 83         | Pre-catalyst oxygen sensor<br>response test                   | 05                      | P0153             |
|            |                                            | 85         | Pre-catalyst oxygen sensor<br>response test1 – 3.0 V6 SC only | 05                      | P0133             |
|            |                                            | 84         | Pre-catalyst oxygen sensor offset<br>test                     | 85                      | P2098             |
| 06         | Oxygen Sensor Monitor                      | 05         | Oxygen sensor 2 transition time                               | 10                      | P013C             |
|            | Bank 2 - Sensor 2                          | 82         | Oxygen sensor 2 delay time rich to lean                       | 10                      | P014A             |
|            |                                            | 83         | Oxygen sensor 2 offset lean                                   | 0A                      | P2272             |
|            |                                            | 84         | Oxygen sensor 2 offset rich                                   | 0A                      | P2273             |
| 07         | Oxygen Sensor Monitor<br>Bank 2 – Sensor 3 | 83         | Oxygen sensor 3 offset lean                                   | 0A                      | P2276             |



| OBD<br>MID | On-Board Diagnostic<br>Monitor Name        | Test<br>ID | Description                        | Unit &<br>Scaling<br>ID | Associated<br>DTC |
|------------|--------------------------------------------|------------|------------------------------------|-------------------------|-------------------|
|            |                                            | 84         | Oxygen sensor 3 offset rich        | 0A                      | P2277             |
| 20         | OBD Monitor IDs<br>supported (\$21 - \$40) | -          |                                    |                         |                   |
| 21         | Catalyst Monitor Bank 1                    | 84         | Catalyst oxygen storage capability | 2F                      | P0420             |
| 22         | Catalyst Monitor Bank 2                    | 84         | Catalyst oxygen storage capability | 2F                      | P0430             |

| OBD<br>MID | On-Board Diagnostic<br>Monitor Name                  | Test<br>ID | Description                                           | Unit &<br>Scaling<br>ID | Associated<br>DTC |
|------------|------------------------------------------------------|------------|-------------------------------------------------------|-------------------------|-------------------|
| 35         | VVT Monitor Bank 1                                   | 80         | Inlet camshaft control target error test              | 9C                      | P0026             |
|            |                                                      | 81         | Inlet camshaft control slow<br>response test          | 9C                      | P0026             |
|            |                                                      | 82         | Exhaust camshaft control target error test            | 9C                      | P0027             |
|            |                                                      | 83         | Exhaust camshaft control slow response test           | 9C                      | P0027             |
|            |                                                      | 84         | Inlet camshaft locking control test                   | 9C                      | P0016             |
|            |                                                      | 85         | Exhaust camshaft locking control test                 | 9C                      | P0017             |
|            |                                                      | 86         | Camshaft profile switching (5.0 V8 NA only)           | 05                      | P003C             |
| 36         | VVT Monitor Bank 2                                   | 80         | Inlet camshaft control target error test              | 9C                      | P0021             |
|            |                                                      | 81         | Inlet camshaft control slow<br>response test          | 9C                      | P0021             |
|            |                                                      | 82         | Exhaust camshaft control target error test            | 9C                      | P0024             |
|            |                                                      | 83         | Exhaust camshaft control slow<br>response test        | 9C                      | P0024             |
|            |                                                      | 84         | Inlet camshaft locking control test                   | 9C                      | P0018             |
|            |                                                      | 85         | Exhaust camshaft locking control test                 | 9C                      | P0019             |
|            |                                                      | 86         | Camshaft profile switching (5.0 V8 NA only)           | 05                      | P003E             |
| 3B         | EVAP Monitor (0.040")                                | 8B         | Rough leak                                            | FE                      | P0442             |
| 3C         | EVAP Monitor (0.020")                                | 84         | Small leak                                            | 05                      | P0456             |
| 3D         | Purge Flow Monitor                                   | 8D         | Purge system low flow test using the DMTL             | 0D                      | P0497             |
|            |                                                      | 8C         | Purge system stuck open test<br>using the DMTL        | 0D                      | P0496             |
| 40         | OBD Monitor IDs<br>supported (\$41 - \$60)           | -          |                                                       |                         |                   |
| 41         | Oxygen Sensor Heater<br>Monitor Bank 1 - Sensor<br>1 | 85         | Pre-catalyst oxygen sensor heater<br>performance test | 16                      | P0135             |




| OBD<br>MID | On-Board Diagnostic<br>Monitor Name                  | Test<br>ID | Description                                           | Unit &<br>Scaling<br>ID | Associated<br>DTC |
|------------|------------------------------------------------------|------------|-------------------------------------------------------|-------------------------|-------------------|
| 42         | Oxygen Sensor Heater<br>Monitor Bank 1 - Sensor<br>2 | 81         | Pre-catalyst oxygen sensor heater<br>performance test | 14                      | P0054             |
| 43         | Oxygen Sensor Heater<br>Monitor Bank 1 - Sensor<br>3 | 81         | Pre-catalyst oxygen sensor heater<br>performance test | 14                      | P0055             |

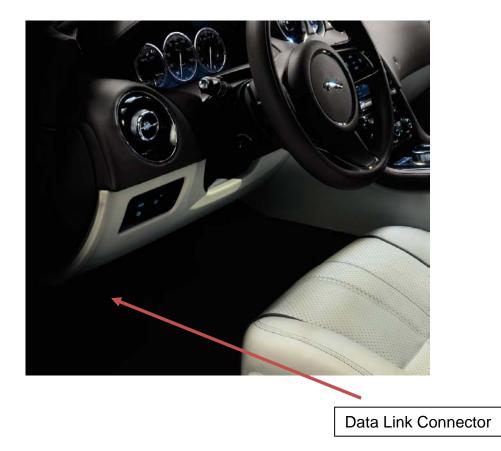
| OBD<br>MID | On-Board Diagnostic<br>Monitor Name                  | Test<br>ID | Description                                           | Unit &<br>Scaling<br>ID | Associated<br>DTC |
|------------|------------------------------------------------------|------------|-------------------------------------------------------|-------------------------|-------------------|
| 45         | Oxygen Sensor Heater<br>Monitor Bank 2 - Sensor<br>1 | 85         | Pre-catalyst oxygen sensor heater<br>performance test | 16                      | P0155             |
| 46         | Oxygen Sensor Heater<br>Monitor Bank 2 - Sensor<br>2 | 81         | Pre-catalyst oxygen sensor heater<br>performance test | 14                      | P0060             |
| 47         | Oxygen Sensor Heater<br>Monitor Bank 2 - Sensor<br>3 | 81         | Post-catalyst oxygen sensor heater<br>resistance test | 14                      | P0061             |
| 60         | OBD Monitor IDs<br>supported (\$61 - \$80)           | -          |                                                       |                         |                   |
| 80         | OBD Monitor IDs<br>supported (\$81 - \$A0)           | -          |                                                       |                         |                   |
| 81         | Fuel System Monitor                                  | A1         | Cylinder 1 imbalance monitor                          | 1E                      | P219C             |
|            | Bank 1 – 3.0 V6 SC                                   | A3         | Cylinder 2 imbalance monitor                          | 1E                      | P219D             |
|            |                                                      | A5         | Cylinder 3 imbalance monitor                          | 1E                      | P219E             |
| 82         | Fuel System Monitor                                  | A1         | Cylinder 4 imbalance monitor                          | 1E                      | P219F             |
|            | Bank 2 – 3.0 V6 SC                                   | A3         | Cylinder 5 imbalance monitor                          | 1E                      | P21A0             |
|            |                                                      | A5         | Cylinder 6 imbalance monitor                          | 1E                      | P21A1             |
| 81         | Fuel System Monitor                                  | A1         | Cylinder 1 imbalance monitor                          | 1E                      | P219C             |
|            | Bank 1 – 5.0 V8                                      | A3         | Cylinder 2 imbalance monitor                          | 1E                      | P219D             |
|            |                                                      | A5         | Cylinder 3 imbalance monitor                          | 1E                      | P219E             |
|            |                                                      | A7         | Cylinder 4 imbalance monitor                          | 1E                      | P219F             |
| 82         | Fuel System Monitor                                  | A1         | Cylinder 5 imbalance monitor                          | 1E                      | P21A0             |
|            | Bank 2 – 5.0 V8                                      | A3         | Cylinder 6 imbalance monitor                          | 1E                      | P21A1             |
|            |                                                      | A5         | Cylinder 7 imbalance monitor                          | 1E                      | P21A2             |
|            |                                                      | A7         | Cylinder 8 imbalance monitor                          | 1E                      | P21A3             |

| OBD<br>MID | On-Board Diagnostic<br>Monitor Name        | Test<br>ID | Description                                               | Unit &<br>Scaling<br>ID | Associated<br>DTC |
|------------|--------------------------------------------|------------|-----------------------------------------------------------|-------------------------|-------------------|
| A0         | OBD Monitor IDs<br>supported (\$A1 - \$C0) | -          |                                                           |                         |                   |
| A2         | Misfire Cylinder 1 Data                    | 0B         | Exponential Weighted Moving<br>Average for Cyl#1          | 24                      | P0301             |
|            |                                            | 0C         | Stored misfire event during<br>last/current DCY for Cyl#1 | 24                      | P0301             |
| A3         | Misfire Cylinder 2 Data                    | 0B         | Exponential Weighted Moving<br>Average for Cyl#2          | 24                      | P0302             |
|            |                                            | 0C         | Stored misfire event during<br>last/current DCY for Cyl#2 | 24                      | P0302             |
| A4         | Misfire Cylinder 3 Data                    | 0B         | Exponential Weighted Moving<br>Average for Cyl#3          | 24                      | P0303             |
|            |                                            | 0C         | Stored misfire event during<br>last/current DCY for Cyl#3 | 24                      | P0303             |
| A5         | Misfire Cylinder 4 Data                    | 0B         | Exponential Weighted Moving<br>Average for Cyl#4          | 24                      | P0304             |
|            |                                            | 0C         | Stored misfire event during<br>last/current DCY for Cyl#4 | 24                      | P0304             |
| A6         | Misfire Cylinder 5 Data                    | 0B         | Exponential Weighted Moving<br>Average for Cyl#5          | 24                      | P0305             |
|            |                                            | 0C         | Stored misfire event during<br>last/current DCY for Cyl#5 | 24                      | P0305             |
| A7         | Misfire Cylinder 6 Data                    | 0B         | Exponential Weighted Moving<br>Average for Cyl#6          | 24                      | P0306             |
|            |                                            | 0C         | Stored misfire event during<br>last/current DCY for Cyl#6 | 24                      | P0306             |
| A8         | Misfire Cylinder 7 Data 5.0 V8 only        | 0B         | Exponential Weighted Moving<br>Average for Cyl#7          | 24                      | P0307             |
|            | , ,                                        | 0C         | Stored misfire event during<br>last/current DCY for Cyl#7 | 24                      | P0307             |
| A9         | Misfire Cylinder 8 Data 5.0 V8 only        | 0B         | Exponential Weighted Moving<br>Average for Cyl#8          | 24                      | P0308             |
|            | -                                          | 0C         | Stored misfire event during<br>last/current DCY for Cyl#8 | 24                      | P0308             |

and the second JAGUAR

### 14.4. Drawing and Location of the Malfunction Indicator Light




# JAGUAR F-Type

and the AGUA

## 14.5. Location of the Data Link Connector

The connector is located in the driver's foot well on the lower face of the dash assembly.

### Jaguar F-Type



©Jaguar Land Rover Limited 2013. All rights reserved.